Let(M,ω)be a symplectic manifold.In this paper,the authors consider the notions of musical(bemolle and diesis)isomorphisms ω~b:T M→T~*M and ω~?:T~*M→TM between tangent and cotangent bundles.The authors prove that...Let(M,ω)be a symplectic manifold.In this paper,the authors consider the notions of musical(bemolle and diesis)isomorphisms ω~b:T M→T~*M and ω~?:T~*M→TM between tangent and cotangent bundles.The authors prove that the complete lifts of symplectic vector field to tangent and cotangent bundles is ω~b-related.As consequence of analyze of connections between the complete lift ~cω_(T M )of symplectic 2-form ω to tangent bundle and the natural symplectic 2-form dp on cotangent bundle,the authors proved that dp is a pullback o f^cω_(TM)by ω~?.Also,the authors investigate the complete lift ~cφ_T~*_M )of almost complex structure φ to cotangent bundle and prove that it is a transform by ω~?of complete lift^cφ_(T M )to tangent bundle if the triple(M,ω,φ)is an almost holomorphic A-manifold.The transform of complete lifts of vector-valued 2-form is also studied.展开更多
文摘Let(M,ω)be a symplectic manifold.In this paper,the authors consider the notions of musical(bemolle and diesis)isomorphisms ω~b:T M→T~*M and ω~?:T~*M→TM between tangent and cotangent bundles.The authors prove that the complete lifts of symplectic vector field to tangent and cotangent bundles is ω~b-related.As consequence of analyze of connections between the complete lift ~cω_(T M )of symplectic 2-form ω to tangent bundle and the natural symplectic 2-form dp on cotangent bundle,the authors proved that dp is a pullback o f^cω_(TM)by ω~?.Also,the authors investigate the complete lift ~cφ_T~*_M )of almost complex structure φ to cotangent bundle and prove that it is a transform by ω~?of complete lift^cφ_(T M )to tangent bundle if the triple(M,ω,φ)is an almost holomorphic A-manifold.The transform of complete lifts of vector-valued 2-form is also studied.