期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Osteoconductivity of Hydrophilic Surfaces of Zr-9Nb-3Sn Alloy with Hydrothermal Treatment 被引量:1
1
作者 mansjur zuldesmi Kensuke Kuroda +2 位作者 Masazumi Okido Masato Ueda Masahiko Ikeda 《Journal of Biomaterials and Nanobiotechnology》 2015年第3期126-134,共9页
Zirconium and its alloys are more suitable materials for implant surgery to be performed in a magnetic resonance imaging scanner compared with other implant materials. Although they have high anticorrosion properties ... Zirconium and its alloys are more suitable materials for implant surgery to be performed in a magnetic resonance imaging scanner compared with other implant materials. Although they have high anticorrosion properties in the body, as do titanium and its alloys, they have little use as implants in contact with bone because of their low osteoconductivity (bone-implant contact ratio). To improve the osteoconductivity of zirconium, niobium, and Zr-9Nb-3Sn alloy, we applied a single- step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3 h. The hydrothermally treated samples were stored in a ×5 phosphate-buffered saline (PBS(-)) solution to keep or to improve the water contact angle (WCA), which has a strongly positive effect on osteoconductivity. The specimen surfaces were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity for various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity of up to 40% in cortical bone, about four times higher than the as-polished Zr-9Nb-3Sn and its pure alloy elements, was provided by the combination of hydrothermal surface treatment and storage in ×5 PBS(-). 展开更多
关键词 ZIRCONIUM ALLOYS HYDROTHERMAL HYDROPHILIC in VIVO OSTEOCONDUCTIVITY
下载PDF
High Osteoconductive Surface of Pure Titanium by Hydrothermal Treatment
2
作者 mansjur zuldesmi Atsushi Waki +1 位作者 Kensuke Kuroda Masazumi Okido 《Journal of Biomaterials and Nanobiotechnology》 2013年第3期284-290,共7页
Surface properties of Ti implants (especially surface hydrophilicity) influence biological responses at the interface between the bone tissue and the implant. However, only a little research reported the effect of sur... Surface properties of Ti implants (especially surface hydrophilicity) influence biological responses at the interface between the bone tissue and the implant. However, only a little research reported the effect of surface hydrophilicity on osteoconductivity by in vivo test. We have investigated the surface characteristics and osteoconductivity of titanium implant produced by hydrothermal treatment using distilled water at temperature of 180°C for 3 h, and compared with as-polished and those of implants produced by anodizing in 0.1 M H2SO4 with applied voltage from 0 V to 100 V at 0.1 Vsˉ1 and anodizing followed by hydrothermal treatment. The relationship between hydrophilic surface and osteoconductivity in various surface modifications was examined by in vivo test. In order to maintain the hydrophilicity of the hydrothermal sample surface, it was kept in to the phosphate buffered saline solution (PBS) with 5 times concentration: 5PBS(-) in room temperature. The surface characteristics were evaluated by scanning electron microscopy, XRD, X-ray photoelectron spectroscopy, surface roughness and contact angle measurement using a 2 μL droplet of distilled water. In in vivo testing, the rod samples (Φ2 × 5 mm) were implanted in male rat’s tibiae for 14 days and the bone-implant contact ratio, RB-I, was used to evaluate the osteoconductivity in the cortical and cancellous bone parts, respectively. As a result, hydrothermal treatment without anodizing still produced a smooth surface like an initial surface roughness of as-polished samples, Ra/μm B-I = 50% in cortical bone part (about four times higher than as-polished Ti) were provided by only hydrothermal process without anodizing after immersing into 5PBS(-). 展开更多
关键词 Titanium HYDROTHERMAL Treatment SUPERHYDROPHILIC In VIVO OSTEOCONDUCTIVITY ANODIZING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部