In this study, based differential equations methods are used to solve equations because these methods are dependent on boundary value data more than other mathematical equations. We have calculated neutron flux, criti...In this study, based differential equations methods are used to solve equations because these methods are dependent on boundary value data more than other mathematical equations. We have calculated neutron flux, criticality and geometrical eigenvalue by using multi-group method and solving the neutron diffusion equation for finite and infinite cylindrical and spherical reactors in this study. For the calculation of the total neutron flux cross sections, we need the neutron diffusion equation. Thus, we have established the relationship between neuron flow and cross-section of neuron depending on neutron energy. Critical calculations have been made by comparing the results with MNCP (montecarlo n-partical) simulation methods. For necessary computer calculations, the programme, Wolfram-Matematica-7 has been used.展开更多
文摘In this study, based differential equations methods are used to solve equations because these methods are dependent on boundary value data more than other mathematical equations. We have calculated neutron flux, criticality and geometrical eigenvalue by using multi-group method and solving the neutron diffusion equation for finite and infinite cylindrical and spherical reactors in this study. For the calculation of the total neutron flux cross sections, we need the neutron diffusion equation. Thus, we have established the relationship between neuron flow and cross-section of neuron depending on neutron energy. Critical calculations have been made by comparing the results with MNCP (montecarlo n-partical) simulation methods. For necessary computer calculations, the programme, Wolfram-Matematica-7 has been used.