Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach...Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Some of the methods are useful for investigating the performance(solution-search abilities)of techniques(comprised of McBAR and other selected EAbased techniques)for solving some multi-objective dynamic resource-constrained project scheduling problems with time-varying number of tasks.Design/methodology/approach–The RSM is applied to:determine some EA parameters of the techniques,develop models of the performance of each technique,legitimize some algorithmic components of McBAR,manifest the relative performance of McBAR over the other techniques and determine the resiliency of McBAR against changes in the environment.Findings–The results of applying the methods are explored in the second part of this work.Originality/value–The models are composite and characterize an EA memory-based technique.Further,the resiliency of techniques is determined by applying Lagrange optimization that involves the models.展开更多
Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algori...Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Design/methodology/approach–The methods applied in this paper are fully explained in the first part.They are utilized to investigate the performances(ability to determine solutions to problems)of techniques composed of McBAR and some EA-based techniques for solving some multi-objective dynamic resource-constrained project scheduling problems with a variable number of tasks.Findings–The main results include the following:first,some algorithmic components of McBAR are legitimate;second,the performance of McBAR is generally superior to those of the other techniques after increase in the number of tasks in each of the above-mentioned problems;and third,McBAR has the most resilient performance among the techniques against changes in the environment that set the problems.Originality/value–This paper is novel for investigating the enumerated results.展开更多
文摘Purpose–This is the first part of a two-part paper.The purpose of this paper is to report on methods that use the Response Surface Methodology(RSM)to investigate an Evolutionary Algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Some of the methods are useful for investigating the performance(solution-search abilities)of techniques(comprised of McBAR and other selected EAbased techniques)for solving some multi-objective dynamic resource-constrained project scheduling problems with time-varying number of tasks.Design/methodology/approach–The RSM is applied to:determine some EA parameters of the techniques,develop models of the performance of each technique,legitimize some algorithmic components of McBAR,manifest the relative performance of McBAR over the other techniques and determine the resiliency of McBAR against changes in the environment.Findings–The results of applying the methods are explored in the second part of this work.Originality/value–The models are composite and characterize an EA memory-based technique.Further,the resiliency of techniques is determined by applying Lagrange optimization that involves the models.
文摘Purpose–This is the second part of a two-part paper.The purpose of this paper is to report the results on the application of the methods that use the Response Surface Methodology to investigate an evolutionary algorithm(EA)and memory-based approach referred to as McBAR–the Mapping of Task IDs for Centroid-Based Adaptation with Random Immigrants.Design/methodology/approach–The methods applied in this paper are fully explained in the first part.They are utilized to investigate the performances(ability to determine solutions to problems)of techniques composed of McBAR and some EA-based techniques for solving some multi-objective dynamic resource-constrained project scheduling problems with a variable number of tasks.Findings–The main results include the following:first,some algorithmic components of McBAR are legitimate;second,the performance of McBAR is generally superior to those of the other techniques after increase in the number of tasks in each of the above-mentioned problems;and third,McBAR has the most resilient performance among the techniques against changes in the environment that set the problems.Originality/value–This paper is novel for investigating the enumerated results.