MXene,an emerging two-dimensional(2D)layered material,has received worldwide attention in various energy storage systems because of its excellent properties.Nevertheless,the low capacity of pristine MXene restricts it...MXene,an emerging two-dimensional(2D)layered material,has received worldwide attention in various energy storage systems because of its excellent properties.Nevertheless,the low capacity of pristine MXene restricts its application in energy storage devices especially for the lithium-ion batteries(LIBs).To address the above issue,herein,a stable and highly conductive double transition metal MXene(Ti_(2)NbC_(2)T_(x)) is successfully fabricated,which provides enlarged interlayer spacing and excellent conductivity for fast ion diffusion and charge transfer.Taking the Ti_(2)NbC_(2)T_(x)s anode for LIBs,a superior specific capacity of 196.2 mAh·g-1and an excellent long-term cycling stability of~100%after 400cycles under 0.1 A·g^(-1) are achieved for LIBs.In particular,Ti_(2)NbC_(2)T_(x) delivers an impressive capacity retention of 81%over 4000 cycle under 1 A·g^(-1),outperforming the Ti_(3)C_(2)T_(x) and various previously reported MXene-based materials.Our results offer an attractive strategy for the future application of MXene-based materials.展开更多
基金supported by the National Science,Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(No.B05F640153)the National Research Council of Thailand(NRCT)(No.NRCT5-RSA63001-19)+2 种基金the National Natural Science Foundation of China(No.52125405)the National Key R&D Program of China(No.2018YFA0703602)financially supporting from the Second Century Fund(C2F),Chulalongkorn University。
文摘MXene,an emerging two-dimensional(2D)layered material,has received worldwide attention in various energy storage systems because of its excellent properties.Nevertheless,the low capacity of pristine MXene restricts its application in energy storage devices especially for the lithium-ion batteries(LIBs).To address the above issue,herein,a stable and highly conductive double transition metal MXene(Ti_(2)NbC_(2)T_(x)) is successfully fabricated,which provides enlarged interlayer spacing and excellent conductivity for fast ion diffusion and charge transfer.Taking the Ti_(2)NbC_(2)T_(x)s anode for LIBs,a superior specific capacity of 196.2 mAh·g-1and an excellent long-term cycling stability of~100%after 400cycles under 0.1 A·g^(-1) are achieved for LIBs.In particular,Ti_(2)NbC_(2)T_(x) delivers an impressive capacity retention of 81%over 4000 cycle under 1 A·g^(-1),outperforming the Ti_(3)C_(2)T_(x) and various previously reported MXene-based materials.Our results offer an attractive strategy for the future application of MXene-based materials.