期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
First Passage Density of Brownian Motion with Two-sided Piecewise Linear Boundaries
1
作者 Zhen YU mao zai tian 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第6期1505-1520,共16页
The first passage time has many applications in fields like finance,econometrics,statistics,and biology.However,explicit formulas for the first passage density have only been obtained for a few cases.This paper derive... The first passage time has many applications in fields like finance,econometrics,statistics,and biology.However,explicit formulas for the first passage density have only been obtained for a few cases.This paper derives an explicit formula for the first passage density of Brownian motion with twosided piecewise continuous boundaries which may have some points of discontinuity.Approximations are used to obtain a simplified formula for estimating the first passage density.Moreover,the results are also generalized to the case of two-sided general nonlinear boundaries.Simulations can be easily carried out with Monte Carlo method and it is demonstrated for several typical two-sided boundaries that the proposed approximation method offers a highly accurate approximation of first passage density. 展开更多
关键词 Boundary non-crossing probability first density passage density two-sided piecewise continuous boundaries Brownian motion
原文传递
Semiparametric Quantile Modelling of Hierarchical Data 被引量:7
2
作者 mao zai tian Man Lai TANG Ping Shing CHAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第4期597-616,共20页
The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biolog... The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-1 model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies. 展开更多
关键词 hierarchical models quantile regression ROBUSTNESS
原文传递
Kernel Quantile Estimator with ICI Adaptive Bandwidth Selection Technique
3
作者 Jie Yu FAN Man Lai TANG mao zai tian 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第4期710-722,共13页
In this article, we consider a class of kernel quantile estimators which is the linear combi- nation of order statistics. This class of kernel quantile estimators can be regarded as an extension of some existing estim... In this article, we consider a class of kernel quantile estimators which is the linear combi- nation of order statistics. This class of kernel quantile estimators can be regarded as an extension of some existing estimators. The exact mean square error expression for this class of estimators will be provided when data are uniformly distributed. The implementation of these estimators depends mostly on the bandwidth selection. We then develop an adaptive method for bandwidth selection based on the intersection confidence intervals (ICI) principle. Monte Carlo studies demonstrate that our proposed approach is comparatively remarkable. We illustrate our method with a real data set. 展开更多
关键词 Adaptive bandwidth selection ICI principle kernel estimator QUANTILES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部