The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-Si...The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-SiO_2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized(RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods.In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO_2 nanoparticles were coated on graphene oxide successfully, and HM-SiO_2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO_2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.展开更多
基金the Guangdong Province Science and Technology projects(No.2017A040402005)Guangdong Bureau of Quality and Technical Supervision Science and Technology projects(No.2017CT30)for financial support of this work
文摘The SiO_2 nanoparticles were coated on the surface of graphene oxide(GO) by sol-gel method to get the SiO_2-G compound.The SiO_2-G was restored and oleophylically modified to prepare hydrophobic modified SiO_2-G(HM-SiO_2-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized(RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods.In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO_2 nanoparticles were coated on graphene oxide successfully, and HM-SiO_2-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO_2-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.