期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Federated Learning on Multimodal Data:A Comprehensive Survey
1
作者 Yi-Ming Lin Yuan Gao +3 位作者 mao-guo gong Si-Jia Zhang Yuan-Qiao Zhang Zhi-Yuan Li 《Machine Intelligence Research》 EI CSCD 2023年第4期539-553,共15页
With the growing awareness of data privacy,federated learning(FL)has gained increasing attention in recent years as a major paradigm for training models with privacy protection in mind,which allows building models in ... With the growing awareness of data privacy,federated learning(FL)has gained increasing attention in recent years as a major paradigm for training models with privacy protection in mind,which allows building models in a collaborative but private way without exchanging data.However,most FL clients are currently unimodal.With the rise of edge computing,various types of sensors and wearable devices generate a large amount of data from different modalities,which has inspired research efforts in multimodal federated learning(MMFL).In this survey,we explore the area of MMFL to address the fundamental challenges of FL on multimodal data.First,we analyse the key motivations for MMFL.Second,the currently proposed MMFL methods are technically classified according to the modality distributions and modality annotations in MMFL.Then,we discuss the datasets and application scenarios of MMFL.Finally,we highlight the limitations and challenges of MMFL and provide insights and methods for future research. 展开更多
关键词 Federated learning multimodal learning heterogeneous data edge computing collaborative learning
原文传递
Computational Intelligence in Remote Sensing Image Registration:A survey 被引量:1
2
作者 Yue Wu Jun-Wei Liu +4 位作者 Chen-Zhuo Zhu Zhuang-Fei Bai Qi-Guang Miao Wen-Ping Ma mao-guo gong 《International Journal of Automation and computing》 EI CSCD 2021年第1期1-17,共17页
In recent years,computational intelligence has been widely used in many fields and achieved remarkable performance.Evolutionary computing and deep learning are important branches of computational intelligence.Many met... In recent years,computational intelligence has been widely used in many fields and achieved remarkable performance.Evolutionary computing and deep learning are important branches of computational intelligence.Many methods based on evolutionary computation and deep learning have achieved good performance in remote sensing image registration.This paper introduces the application of computational intelligence in remote sensing image registration from the two directions of evolutionary computing and deep learning.In the part of remote sensing image registration based on evolutionary calculation,the principles of evolutionary algorithms and swarm intelligence algorithms are elaborated and their application in remote sensing image registration is discussed.The application of deep learning in remote sensing image registration is also discussed.At the same time,the development status and future of remote sensing image registration are summarized and their prospects are examined. 展开更多
关键词 Computational intelligence evolutionary computation neural network deep learning remote sensing image registration
原文传递
Robust visual tracking via randomly projected instance learning
3
作者 Fei Cheng Kai Liu +2 位作者 mao-guo gong Kaiyuan Fu Jiangbo Xi 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第3期258-271,共14页
Purpose–The purpose of this paper is to design a robust tracking algorithm which is suitable for the real-time requirement and solves the mistake labeling issue in the appearance model of trackers with the spare feat... Purpose–The purpose of this paper is to design a robust tracking algorithm which is suitable for the real-time requirement and solves the mistake labeling issue in the appearance model of trackers with the spare features.Design/methodology/approach–This paper proposes a tracker to select the most discriminative randomly projected ferns and integrates a coarse-to-fine search strategy in this framework.First,the authors exploit multiple instance boosting learning to maximize the bag likelihood and select randomly projected fern from feature pool to degrade the effect of mistake labeling.Second,a coarse-to-fine search approach is first integrated into the framework of multiple instance learning(MIL)for less detections.Findings–The quantitative and qualitative experiments demonstrate that the tracker has shown favorable performance in efficiency and effective among the competitors of tracking algorithms.Originality/value–The proposed method selects the feature from the compressive domain by MIL AnyBoost and integrates the coarse-to-fine search strategy first to reduce the burden of detection.This paper designs a tracker with high speed and favorable results which is more suitable for real-time scene. 展开更多
关键词 Multiple instance learning Randomly projected fern Search strategy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部