A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a m...A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press / extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400- 450 ℃,the extrusion ratio of( 25- 100) ∶ 1 and the extrusion rate of 0. 10- 0. 20 mm / s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature,the extrusion ratio and the extrusion rate,respectively. Recycled specimens reached the highest ultimate tensile strength of average 361. 47 MPa and the highest elongation to failure of average 11. 55% when adopting the hot-press,the extrusion temperature of 400± 5 ℃,the extrusion ratio of 100 ∶ 1 and the extrusion rate of 0. 15 mm / s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves,the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves,the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.展开更多
To obtain the aluminum alloy with high thermal and mechanical properties,the effects of alloying elements and the second phases on the thermal conductivity of Al alloys were investigated by CALPHAD and first-principle...To obtain the aluminum alloy with high thermal and mechanical properties,the effects of alloying elements and the second phases on the thermal conductivity of Al alloys were investigated by CALPHAD and first-principles calculation,respectively.The properties of the second phases,including Young's modulus,Poisson's ratio and minimum thermal conductivity,were systematically studied.Results show that the ranking order of the effects of the alloying elements on the thermal conductivity is Mg>Cu>Fe>Si,and for Al-12Si alloys,the mathematical model of the relationship between the alloying elements and the thermal conductivity can be expressed as λ=ax^(2)-bx+c when the second phase precipitates in the matrix.All kinds of ternary phases of Al-Fe-Si have higher deformation resistance,rigidity,theoretical hardness,Debye temperature and thermal conductivity than the other phases which possibly exist in the Al-12Si alloys.Based on the guidance of CALPHAD and first-principles calculation,the optimized chemical composition of Al alloy with high conductivity is Al-11.5Si-0.4Fe-0.2Mg(wt.%)with a thermal conductivity of 137.50 W·m^(-1)·K^(-1)and a hardness of 81.3 HBW.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51704087)the Natural Science Foundation of Heilongjiang Province, China (No. LH2020E083)。
基金National Key Research and Development Program of China(No.2019YFB2006500)National Natural Science Foundation of China(Nos.51574100,51704087)Natural Science Foundation of Heilongjiang Province,China(No.LH2020E083)。
基金Sponsored by the National Natural Science Foundation of China(Grant No.50974048)the Doctoral Fund of Ministry of Education of China(Grant No.200802140004)+1 种基金the Foundation of Heilongjiang Educational Committee(Grant No.12531116)the Harbin Special Funds for Creative Talents in Science and Technology(Grant No.2013RFQXJ102)
文摘A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press / extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400- 450 ℃,the extrusion ratio of( 25- 100) ∶ 1 and the extrusion rate of 0. 10- 0. 20 mm / s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature,the extrusion ratio and the extrusion rate,respectively. Recycled specimens reached the highest ultimate tensile strength of average 361. 47 MPa and the highest elongation to failure of average 11. 55% when adopting the hot-press,the extrusion temperature of 400± 5 ℃,the extrusion ratio of 100 ∶ 1 and the extrusion rate of 0. 15 mm / s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves,the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves,the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.
基金the National Natural Science Foundation of China(Nos.51801045 and 52171113)the Key Laboratory of Materials Modification by Laser,Ion and Electron Beams,Ministry of Education,Dalian University of Technology(No.KF2002).
文摘To obtain the aluminum alloy with high thermal and mechanical properties,the effects of alloying elements and the second phases on the thermal conductivity of Al alloys were investigated by CALPHAD and first-principles calculation,respectively.The properties of the second phases,including Young's modulus,Poisson's ratio and minimum thermal conductivity,were systematically studied.Results show that the ranking order of the effects of the alloying elements on the thermal conductivity is Mg>Cu>Fe>Si,and for Al-12Si alloys,the mathematical model of the relationship between the alloying elements and the thermal conductivity can be expressed as λ=ax^(2)-bx+c when the second phase precipitates in the matrix.All kinds of ternary phases of Al-Fe-Si have higher deformation resistance,rigidity,theoretical hardness,Debye temperature and thermal conductivity than the other phases which possibly exist in the Al-12Si alloys.Based on the guidance of CALPHAD and first-principles calculation,the optimized chemical composition of Al alloy with high conductivity is Al-11.5Si-0.4Fe-0.2Mg(wt.%)with a thermal conductivity of 137.50 W·m^(-1)·K^(-1)and a hardness of 81.3 HBW.