期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A novel multimode process monitoring method integrating LDRSKM with Bayesian inference
1
作者 Shi-jin REN Yin LIANG +1 位作者 Xiang-jun ZHAO mao-yun yang 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第8期617-633,共17页
A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and n... A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process. 展开更多
关键词 Multimode process monitoring Local discriminant regularized soft k-means clustering Kernel support vector datadescription Bayesian inference Tennessee Eastman process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部