The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibr...The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.展开更多
As x-ray probe pulses approach the subfemtosecond range,conventional x-ray photoelectron spectroscopy(XPS)is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening.However...As x-ray probe pulses approach the subfemtosecond range,conventional x-ray photoelectron spectroscopy(XPS)is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening.However,in the case of resonant x-ray photoemission,also known as resonant Auger scattering(RAS),the spectroscopic technique maintains spectral resolution when an x-ray pulse is precisely tuned to a core-excited state.We present theoretical simulations of XPS and RAS spectra on a showcased CO molecule using ultrashort x-ray pulses,revealing significantly enhanced resolution in the RAS spectra compared to XPS,even in the subfemtosecond regime.These findings provide a novel perspective on potential utilization of attosecond x-ray pulses,capitalizing on the well-established advantages of detecting electron signals for tracking electronic and molecular dynamics.展开更多
We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy...We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of-5°,-10°,and-15°.Present multi-center distorted-wave method well describes the experimental data,which was obtained by performing(e,2e)experiment.The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential,which must be considered when the low energy electron interacts with DNA analogues.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12004370 and 12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000)。
文摘The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.
基金supported by the National Natural Science Foundation of China(Grant Nos.11934004 and 11974230)Russian Science Foundation(Grant No.21-12-00193)。
文摘As x-ray probe pulses approach the subfemtosecond range,conventional x-ray photoelectron spectroscopy(XPS)is expected to experience a reduction in spectral resolution due to the effects of the pulse broadening.However,in the case of resonant x-ray photoemission,also known as resonant Auger scattering(RAS),the spectroscopic technique maintains spectral resolution when an x-ray pulse is precisely tuned to a core-excited state.We present theoretical simulations of XPS and RAS spectra on a showcased CO molecule using ultrashort x-ray pulses,revealing significantly enhanced resolution in the RAS spectra compared to XPS,even in the subfemtosecond regime.These findings provide a novel perspective on potential utilization of attosecond x-ray pulses,capitalizing on the well-established advantages of detecting electron signals for tracking electronic and molecular dynamics.
基金the National Natural Science Foundation of China(Grant Nos.12004370,11534011,and 11934004)the National Key Research and Development Program of China(Grant Nos.2017YFA0402300 and 2019YFA0210004).
文摘We report theoretical studies of electron impact triple differential cross sections of two bio-molecules,pyrimidine and tetrahydrofurfuryl alcohol,in the coplanar asymmetric kinematic conditions with the impact energy of 250 eV and ejected electron energy of 20 eV at three scattering angles of-5°,-10°,and-15°.Present multi-center distorted-wave method well describes the experimental data,which was obtained by performing(e,2e)experiment.The calculations show that the secondary electron produced by the primary impact electron is strongly influenced by the molecular ionic multi-center potential,which must be considered when the low energy electron interacts with DNA analogues.