期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Digital gene expression profiling analysis of A549 cells cultured with PM10 in moxa smoke 被引量:1
1
作者 Xin Hui Ping Liu +7 位作者 Li Han Chang Huang Zhihua Yang maoxiang zhu Bicheng Yang Ruoxi Li Zhixiu Lin Baixiao Zhao 《Journal of Traditional Chinese Medical Sciences》 2020年第4期404-412,共9页
Background:Moxibustion is a traditional Chinese medicine therapy to cure diseases by fumigating meridians or affected parts via burning of moxa floss.Moxa smoke(MS)is one of the key factors in moxibustion.In this stud... Background:Moxibustion is a traditional Chinese medicine therapy to cure diseases by fumigating meridians or affected parts via burning of moxa floss.Moxa smoke(MS)is one of the key factors in moxibustion.In this study,we adopted digital gene expression profiling,a next-generation gene sequencing technology,to investigate the effect of MS,inhalable particulate matter(PM10),on human lung adenocarcinoma A549 cells.Methods:The effects of MS PM10 on A549 cells,over different treatment durations were investigated in different groups:the 4-h group(4-h MS group and 4-h control group)and the 20-h group(20-h MS group and 20-h control group).Samples collected from the four groups were stored at80C for subsequent digital gene expression analysis.The differentially expressed genes(DEGs),identified after PM10 treatment,were screened,and their expression patterns analyzed by cluster analysis,Gene Ontology term enrichment,and Kyoto Encyclopedia of Genes and Genomes pathway analysis.Results:Compared with two control groups,1109 DEGs were identified after 4 h of MS intervention and 3565 DEGs were found after 20 h of MS intervention,respectively.Compared with that after 4-h intervention,2149 DEGs were identified after 20-h intervention.Cluster analysis demonstrated that PM10 can significantly inhibit cell cycle process with the prolongation of intervention time.Significant pathway enrichment analysis showed that MS PM10 can inhibit A549 cell cycle process at all phases.When MS PM10 exposure time prolongs,the inhibitory effect on cell cycle process becomes more obvious.Conclusion:MS PM10 has many biological activities,and may cause differential expression of genes involved in various biological processes.Nevertheless,further research on MS is warranted for better understanding of the mechanistic details. 展开更多
关键词 Moxa smoke Particulate matter Digital gene expression MOXIBUSTION A549 cells
下载PDF
Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations
2
作者 Pengyun Li Changkai Jia +11 位作者 Zhiya Fan Xiaotong Hu Wenjuan Zhang Ke Liu Shiyang Sun Haoxin Guo Ning Yang maoxiang zhu Xiaomei zhuang Junhai Xiao Zhibing Zheng Song Li 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第6期2715-2735,共21页
Various c-mesenchymal-to-epithelial transition(c-MET) inhibitors are effective in the treatment of non-small cell lung cancer;however, the inevitable drug resistance remains a challenge, limiting their clinical effica... Various c-mesenchymal-to-epithelial transition(c-MET) inhibitors are effective in the treatment of non-small cell lung cancer;however, the inevitable drug resistance remains a challenge, limiting their clinical efficacy. Therefore, novel strategies targeting c-MET are urgently required. Herein, through rational structure optimization, we obtained novel exceptionally potent and orally active c-MET proteolysis targeting chimeras(PROTACs) namely D10 and D15 based on thalidomide and tepotinib. D10 and D15 inhibited cell growth with low nanomolar IC_(50) values and achieved picomolar DC_(50) values and>99% of maximum degradation(D_(max)) in EBC-1 and Hs746T cells. Mechanistically, D10 and D15dramatically induced cell apoptosis, G1 cell cycle arrest and inhibited cell migration and invasion.Notably, intraperitoneal administration of D10 and D15 significantly inhibited tumor growth in the EBC-1 xenograft model and oral administration of D15 induced approximately complete tumor suppression in the Hs746T xenograft model with well-tolerated dose-schedules. Furthermore, D10 and D15 exerted significant anti-tumor effect in cells with c-MET^(Y1230H) and c-MET^(D1228N) mutations, which are resistant to tepotinib in clinic. These findings demonstrated that D10 and D15 could serve as candidates for the treatment of tumors with MET alterations. 展开更多
关键词 Cancer therapy Drug design C-MET Proteolysis targeting chimeras(PROTACs) Drug resistance
原文传递
Ubiquitination and degradation of SIK2 by DNA-PKcs deficiency promote radiation-induced mitotic catastrophe
3
作者 Jiaojiao zhu Ying Zhang +8 位作者 Ziyan Yan Jianxiao Wang Ping Wang Xinxin Liang Yuhao Liu Xingkun Ao maoxiang zhu Pingkun Zhou Yongqing Gu 《Genes & Diseases》 SCIE CSCD 2023年第2期313-316,共4页
Salt-inducible kinase 2 (SIK2) is a member of the AMP-activated serine/threonine kinase family. It has been reported that inhibition of SIK2 can enhance the cytotoxicity of paclitaxel,1 promote premitotic apoptosis, a... Salt-inducible kinase 2 (SIK2) is a member of the AMP-activated serine/threonine kinase family. It has been reported that inhibition of SIK2 can enhance the cytotoxicity of paclitaxel,1 promote premitotic apoptosis, and lead to cell cycle arrest in the metaphase.2 Thus, targeting SIK2 may be a therapeutic strategy for cancers drug and radiotherapy resistance. Mitotic catastrophe is a type of abnormal mitosis leading to cell death characterized by the multipolar spindle and multinucleation, which was first discovered during an ionizing radiation (IR)-induced cell damage.3 However, the mechanism of mitotic catastrophe is not well understood. The present study aimed to assess the effect of the knockdown of SIK2 on IR-induced mitotic catastrophe. 展开更多
关键词 CATASTROPHE SIK2 damage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部