期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans 被引量:3
1
作者 Chunxiao Zhao Baojun Yang +4 位作者 Rui Liao maoxin hong Shichao Yu Jun Wang Guanzhou Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期457-465,共9页
The bioleaching of chalcopyrite is low cost and environmentally friendly,but the leaching rate is low.To explore the mechanism of chalcopyrite bioleaching and improve its leaching rate,the effect and mechanism of mang... The bioleaching of chalcopyrite is low cost and environmentally friendly,but the leaching rate is low.To explore the mechanism of chalcopyrite bioleaching and improve its leaching rate,the effect and mechanism of manganese ions(Mn^(2+))and visible light on chalcopyrite mediated by Acidithiobacillus ferrooxidans(A.ferrooxidans)were discussed.Bioleaching experiments showed that when both Mn^(2+)and visible light were present,the copper extraction was 14.38%higher than that of the control system(without Mn^(2+)and visible light).Moreover,visible light and Mn^(2+)promoted the growth of A.ferrooxidans.Scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS)analysis revealed that Mn^(2+)promoted the formation of extracellular polymeric substance(EPS)on the surface of chalcopyrite,changed the morphology of A.ferrooxidans,enhanced the adsorption of bacteria on chalcopyrite surface with light illumination,and thus promoted the bioleaching of chalcopyrite.UV–vis absorbance spectra indicated that Mn^(2+)promoted the response of chalcopyrite to visible light and enhanced the catalytic effect of visible light on chalcopyrite bioleaching.Based on X-ray photoelectron spectroscopy(XPS),the relevant sulfur speciation of chalcopyrite before and after bioleaching were analyzed and the results revealed that visible light and Mn^(2+)promoted chalcopyrite bioleaching by reducing the formation of passivation layer(S_(n)^(2-)/S0).Investigation into electrochemical results further indicated that Mn^(2+)and visible light improved the electrochemical activity of chalcopyrite,thus increasing the bioleaching rate. 展开更多
关键词 Acidithiobacillus ferrooxidans Mn^(2+) ELECTROCHEMISTRY CATALYSIS DISSOLUTION
下载PDF
Inhibition of hematite on acid mine drainage caused by chalcopyrite biodissolution 被引量:2
2
作者 Baojun Yang Wen Luo +4 位作者 maoxin hong Jun Wang Xueduan Liu Min Gan Guanzhou Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期94-104,共11页
Even though biodissolution of chalcopyrite is considered to be one of the key contributors in the formation of acid mine drainage(AMD),there are few studies to control AMD by inhibiting chalcopyrite biodissolution.The... Even though biodissolution of chalcopyrite is considered to be one of the key contributors in the formation of acid mine drainage(AMD),there are few studies to control AMD by inhibiting chalcopyrite biodissolution.Therefore,a novel method of using hematite to inhibit chalcopyrite biodissolution was proposed and verified.The results indicated that chalcopyrite biodissolution could be significantly inhibited by hematite,which consequently decreased the formation of AMD.In the presence of hematite,the final biodissolution rate of chalcopyrite decreased from 57.9%to 44.4%at 20 day.This in turn suggested that the formation of AMD was effectively suppressed under such condition.According to the biodissolution results,mineral composition and morphology analyses,and electrochemical analysis,it was shown that hematite promoted the formation and accumulation of passivation substances(jarosite and Cu2-xS)on chalcopyrite surface,thus inhibiting the biodissolution of chalcopyrite and limiting the formation of AMD. 展开更多
关键词 CHALCOPYRITE HEMATITE Biodissolution Acid mine drainage Acidithiobacillus ferrooxidans
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部