Pure, and Europium ion doped Zinc oxide nanocrystals (ZnO:Eu3+) were synthesized by a solution combustion technique. The X-ray diffraction patterns (XRD) reveals the existence of the Eu2O3 phase. From the results of b...Pure, and Europium ion doped Zinc oxide nanocrystals (ZnO:Eu3+) were synthesized by a solution combustion technique. The X-ray diffraction patterns (XRD) reveals the existence of the Eu2O3 phase. From the results of both, X-ray diffraction and photoluminescence spectra (PL) reveal that Eu3+ ions successfully substitute for Zn2+ ions in the ZnO lattice, moreover, when the amount of doped Europium was varied, this changes are showed in changes in the luminescence intensity. The PL is broad and a set of colors was emitted which originates from ZnO and the intra 4f transitions of Eu3+ ions. The existence of the Zn-O, Eu3+-O and O1s bonding energies were confirmed by X-ray photoelectron spectroscopy (XPS) technique. The samples morphology was registered by a scanning electron microscopy (SEM) technique, and reveals that Europium ions are present on the surface of the ZnO nanocrystals.展开更多
文摘Pure, and Europium ion doped Zinc oxide nanocrystals (ZnO:Eu3+) were synthesized by a solution combustion technique. The X-ray diffraction patterns (XRD) reveals the existence of the Eu2O3 phase. From the results of both, X-ray diffraction and photoluminescence spectra (PL) reveal that Eu3+ ions successfully substitute for Zn2+ ions in the ZnO lattice, moreover, when the amount of doped Europium was varied, this changes are showed in changes in the luminescence intensity. The PL is broad and a set of colors was emitted which originates from ZnO and the intra 4f transitions of Eu3+ ions. The existence of the Zn-O, Eu3+-O and O1s bonding energies were confirmed by X-ray photoelectron spectroscopy (XPS) technique. The samples morphology was registered by a scanning electron microscopy (SEM) technique, and reveals that Europium ions are present on the surface of the ZnO nanocrystals.