Oxygen reduction reaction(ORR)is an important electrochemical process for renewable energy conversion and storage applications such as fuel cells and metal-air batteries.ORR is sluggish in kinetics and requires a larg...Oxygen reduction reaction(ORR)is an important electrochemical process for renewable energy conversion and storage applications such as fuel cells and metal-air batteries.ORR is sluggish in kinetics and requires a large amount of platinum group metal(PGM)-based catalysts to facilitate its slow reaction rate.Application of precious metals raises the cost and decreases the competitivity of these devices in the market.To address this challenge,PGM-free ORR catalysts have been intensively investigated as an alternative to replace the PGM-based catalysts and to promote the deployment of ORR-related applications.In particular,the biomass holds promising potential to be used as the precursor material for PGM-free ORR catalysts.This pathway has gained more and more attention in recent years.In this review,recent advances regarding biomass-derived ORR catalysts are summarized with a focus on the rational design of both active sites and porous structures which are the two key factors in determining ORR performance of catalysts.At the end,the perspectives of development of biomass-derived catalysts is discussed.展开更多
Benefiting from the advantageous features of high safety,abundant reserves,low cost,and high energy density,aqueous Zn-based rechargeable batteries(AZBs)have received extensive attention as promising candidates for en...Benefiting from the advantageous features of high safety,abundant reserves,low cost,and high energy density,aqueous Zn-based rechargeable batteries(AZBs)have received extensive attention as promising candidates for energy storage.To achieve high-performance AZBs with high reversibility and energy density,great efforts have been devoted to overcoming their drawbacks by focusing on the modification of electrode materials and electrolytes.Based on different cathode materials and aqueous electrolytes,the development of aqueous AZBs with different redox mechanisms are discussed in this review,including insertion/extraction chemistries(e.g.,Zn^(2+),alkali metal ion,H^(+),NH_(4)^(+),and so forth dissolution/deposition reactions(e.g.,MnO_(2)/Mn^(2+)),redox couples in flow batteries(e.g.,I_(3)/3I,Br_(2)/Br,and so forth),oxygen electrochemistry(e.g.,O_(2)/OH,O_(2)/O_(2)2),and carbon dioxide electrochemistry(e.g.,CO_(2)/CO,CO_(2)/HCOOH).In particular,the basic reaction mechanisms,issues with the Zn electrode,aqueous electrolytes,and cathode materials as well as their design strategies are systematically reviewed.Finally,the remaining challenges faced by AZBs are summarized,and perspectives for further investigations are proposed.展开更多
基金This study is financially supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the Fonds de Recherche du Québec—Nature et Technologies(FRQNT),Centre Québécois sur les Materiaux Fonctionnels(CQMF)+3 种基金Institut National de la Recherche Scientifique(INRS)National Natural Science Foundation of China(Grant No.21805064)SS acknowledges the ECS-Toyota Young Investigator Fellowship.LD acknowledges the scholarship under the International Postdoctoral Exchange Fellowship Program by the Office of China Postdoctoral Council(Grant No.20180072)FRQNT for the Postdoctoral scholarship(V2,file number:274384)in Quebec Canada.
文摘Oxygen reduction reaction(ORR)is an important electrochemical process for renewable energy conversion and storage applications such as fuel cells and metal-air batteries.ORR is sluggish in kinetics and requires a large amount of platinum group metal(PGM)-based catalysts to facilitate its slow reaction rate.Application of precious metals raises the cost and decreases the competitivity of these devices in the market.To address this challenge,PGM-free ORR catalysts have been intensively investigated as an alternative to replace the PGM-based catalysts and to promote the deployment of ORR-related applications.In particular,the biomass holds promising potential to be used as the precursor material for PGM-free ORR catalysts.This pathway has gained more and more attention in recent years.In this review,recent advances regarding biomass-derived ORR catalysts are summarized with a focus on the rational design of both active sites and porous structures which are the two key factors in determining ORR performance of catalysts.At the end,the perspectives of development of biomass-derived catalysts is discussed.
基金Centre Québéco is sur les Materiaux FonctionnelsChina Scholarship Council+5 种基金Fonds de Recherche du Québec-Nature et TechnologiesNatural Sciences and Engineering Research Council of CanadaClermont Auvergne MétropoleUniversitéClermont AuvergneI-Site CAP2025Institut National de la Recherche Scientifique。
文摘Benefiting from the advantageous features of high safety,abundant reserves,low cost,and high energy density,aqueous Zn-based rechargeable batteries(AZBs)have received extensive attention as promising candidates for energy storage.To achieve high-performance AZBs with high reversibility and energy density,great efforts have been devoted to overcoming their drawbacks by focusing on the modification of electrode materials and electrolytes.Based on different cathode materials and aqueous electrolytes,the development of aqueous AZBs with different redox mechanisms are discussed in this review,including insertion/extraction chemistries(e.g.,Zn^(2+),alkali metal ion,H^(+),NH_(4)^(+),and so forth dissolution/deposition reactions(e.g.,MnO_(2)/Mn^(2+)),redox couples in flow batteries(e.g.,I_(3)/3I,Br_(2)/Br,and so forth),oxygen electrochemistry(e.g.,O_(2)/OH,O_(2)/O_(2)2),and carbon dioxide electrochemistry(e.g.,CO_(2)/CO,CO_(2)/HCOOH).In particular,the basic reaction mechanisms,issues with the Zn electrode,aqueous electrolytes,and cathode materials as well as their design strategies are systematically reviewed.Finally,the remaining challenges faced by AZBs are summarized,and perspectives for further investigations are proposed.