Laser powder bed fusion(L-PBF)was utilized to produce specimens in Ti-6Al-4V,which were subjected to a bi-lamellar heat treatment,which produces microstructures consisting of primary α-lamellae and a fine secondary ...Laser powder bed fusion(L-PBF)was utilized to produce specimens in Ti-6Al-4V,which were subjected to a bi-lamellar heat treatment,which produces microstructures consisting of primary α-lamellae and a fine secondary α-phase inside the inter-lamellar β-regions.The bi-lamellar microstructure was obtained as(i)a direct bi-lamellar heat treatment from the asbuilt condition or(ii)a bi-lamellar heat treatment preceded by a β-homogenization.For the bi-lamellar treatment with β-homogenization,cooling rates in the range 1-500 K/min were applied after homogenization in β-region followed by inter-critical annealing in the α+β region at various temperatures in the range 850-950℃.The microstructures were characterized using various microscopical techniques.Mechanical testing with Vickers hardness indentation and tensile testing was performed.The bi-lamellar microstructure was harder when compared to a soft fully lamellar microstructure,because of the presence of fine α-platelets inside the β-lamellae.Final low temperature ageing provided an additional hardness increase by precipitation hardening of the primary α-regions.The age hardened bi-lamellar microstructure shows a similar hardness as the very fine,as-built martensitic microstructure.The bi-lamellar microstructure has more favorable mechanical properties than the as-built condition,which has high strength,but poor ductility.After the bi-lamellar heat treatment,the elongation was improved by more than 250%.Due to the very high strength of the as-built condition,loss of tensile strength is unavoidable,resulting in a reduction of tensile strength of~18%.展开更多
基金This research was conducted in connection with the AM-LINE4.0 project(No.7076-00074B)funded by the Danish Innovation Fund。
文摘Laser powder bed fusion(L-PBF)was utilized to produce specimens in Ti-6Al-4V,which were subjected to a bi-lamellar heat treatment,which produces microstructures consisting of primary α-lamellae and a fine secondary α-phase inside the inter-lamellar β-regions.The bi-lamellar microstructure was obtained as(i)a direct bi-lamellar heat treatment from the asbuilt condition or(ii)a bi-lamellar heat treatment preceded by a β-homogenization.For the bi-lamellar treatment with β-homogenization,cooling rates in the range 1-500 K/min were applied after homogenization in β-region followed by inter-critical annealing in the α+β region at various temperatures in the range 850-950℃.The microstructures were characterized using various microscopical techniques.Mechanical testing with Vickers hardness indentation and tensile testing was performed.The bi-lamellar microstructure was harder when compared to a soft fully lamellar microstructure,because of the presence of fine α-platelets inside the β-lamellae.Final low temperature ageing provided an additional hardness increase by precipitation hardening of the primary α-regions.The age hardened bi-lamellar microstructure shows a similar hardness as the very fine,as-built martensitic microstructure.The bi-lamellar microstructure has more favorable mechanical properties than the as-built condition,which has high strength,but poor ductility.After the bi-lamellar heat treatment,the elongation was improved by more than 250%.Due to the very high strength of the as-built condition,loss of tensile strength is unavoidable,resulting in a reduction of tensile strength of~18%.