期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of Laser-Induced Bubble Formation on Laser Chemical Machining
1
作者 marcel simons Tim Radel +1 位作者 Raj Shanta Kajsaravally Frank Vollertsen 《Journal of Surface Engineered Materials and Advanced Technology》 2020年第2期21-33,共13页
Laser Chemical Machining (LCM) is a non-conventional processing method, which enables very accurate and precise ablation of metallic surfaces. Material ablation results from laser-induced thermal activation of heterog... Laser Chemical Machining (LCM) is a non-conventional processing method, which enables very accurate and precise ablation of metallic surfaces. Material ablation results from laser-induced thermal activation of heterogeneous chemical reactions between electrolytes and a metallic surface. However, when processing metallic surfaces with LCM, large fluctuations in ablation quality can occur due to rising bubbles. The for-mation of bubbles during laser chemical machining and their influence on the ablation quality has not been investigated. For a more detailed investigation of the bubbles, ablation experiments on Titanium and Ce-ramic under different thermal process conditions were performed. The experiments were recorded by a high-speed camera. The evaluation of the video sequences was performed using Matlab. The resulting bubbles were analyzed regarding their size and frequency. The results show that boil-ing bubbles formed on both materials during processing. Titanium also produces smaller bubbles, which can be identified as process bubbles ac-cording to their size. Furthermore, it was found that undisturbed laser chemical ablation can be achieved in the presence of a boiling process, since both boiling bubbles and process bubbles were detected during machining within the process window. 展开更多
关键词 MICRO MACHINING LASER MICRO MACHINING LASER CHEMICAL Removal Nucleate BOILING Highspeed Videography
下载PDF
Process Window Expansion of Laser Chemical Machining by Using High Pressure
2
作者 marcel simons Tim Radel Frank Vollertsen 《Materials Sciences and Applications》 2020年第5期296-304,共9页
Laser Chemical Machining (LCM) is a non-conventional removal process, based on a precise thermal activation of heterogeneous chemical reactions between an electrolyte and a metallic surface. Due to local overheating d... Laser Chemical Machining (LCM) is a non-conventional removal process, based on a precise thermal activation of heterogeneous chemical reactions between an electrolyte and a metallic surface. Due to local overheating during the process, boiling bubbles occur, which can impair the removal quality. In order to reduce the amount of bubbles, the laser chemical process is performed at different process pressures. Removal experiments were performed on Titanium Grade 1 using the electrolyte phosphoric acid at various process pressures, machining speeds and laser powers in order to determine the limit of the process window by evaluating the characteristics of the removal cavities. As a result, the process window for non-disturbed laser chemical machining is widened at higher process pressures. The process pressures have no influence on the geometric shape of the removal. The expansion of the process window is attributed to the fact that at higher process pressures the saturation temperature of the electrolyte rises, so that bubble boiling starts at a higher surface temperature on the workpiece induced by the laser power. The removal rate could be increased by a factor of 2.48 by increasing the process pressures from ambient pressure to 6 bar, thus taking an important step towards the economic efficiency of the laser chemical machining. 展开更多
关键词 MICRO MACHINING LASER MICRO MACHINING LASER CHEMICAL REMOVAL REMOVAL Rate Process Pressure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部