Optical metasurfaces open new avenues for the precise wavefront control of light for integrated quantum technology.Here,we demonstrate a hybrid integrated quantum photonic system that is capable of entangling and dise...Optical metasurfaces open new avenues for the precise wavefront control of light for integrated quantum technology.Here,we demonstrate a hybrid integrated quantum photonic system that is capable of entangling and disentangling two-photon spin states at a dielectric metasurface.Via the interference of single-photon pairs at a nanostructured dielectric metasurface,a path-entangled two-photon NOON state with circular polarization that exhibits a quantum HOM interference visibility of 86±4% is generated.Furthermore,we demonstrate nonclassicality andphase sensitivity in a metasurface-based interferometer with a fringe visibility of 86.8±1.1%in the coincidence counts.This high visibility proves the metasurface-induced path entanglement inside the interferometer.Our findings provide a promising way to develop hybrid-integrated quantum technology operating in the high-dimensional mode space in various applications,such as imaging,sensing,and computing.展开更多
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement No.724306)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)through the Collaborated Research Center TRR 142(No.231447078)+1 种基金supported by the National Natural Science Foundation of China(Grant no.11774145)Applied Science and Technology Project of Guangdong Science and Technology Department(2017B090918001).
文摘Optical metasurfaces open new avenues for the precise wavefront control of light for integrated quantum technology.Here,we demonstrate a hybrid integrated quantum photonic system that is capable of entangling and disentangling two-photon spin states at a dielectric metasurface.Via the interference of single-photon pairs at a nanostructured dielectric metasurface,a path-entangled two-photon NOON state with circular polarization that exhibits a quantum HOM interference visibility of 86±4% is generated.Furthermore,we demonstrate nonclassicality andphase sensitivity in a metasurface-based interferometer with a fringe visibility of 86.8±1.1%in the coincidence counts.This high visibility proves the metasurface-induced path entanglement inside the interferometer.Our findings provide a promising way to develop hybrid-integrated quantum technology operating in the high-dimensional mode space in various applications,such as imaging,sensing,and computing.