Let X be a Kobayashi hyperbolic complex manifold, and assume that X does not contain compact complex submanifolds of positive dimension (e.g., X Stein). We shall prove the following generalization of Ritt's theore...Let X be a Kobayashi hyperbolic complex manifold, and assume that X does not contain compact complex submanifolds of positive dimension (e.g., X Stein). We shall prove the following generalization of Ritt's theorem: every holomorphic self-map f: X →X such that f(X) is relatively compact in X has a unique fixed point τ(f) ∈ X, which is attracting. Furthermore, we shall prove that τ(f) depends holomorphically on f in a suitable sense, generalizing results by Heins, Joseph-Kwack and the second author.展开更多
文摘Let X be a Kobayashi hyperbolic complex manifold, and assume that X does not contain compact complex submanifolds of positive dimension (e.g., X Stein). We shall prove the following generalization of Ritt's theorem: every holomorphic self-map f: X →X such that f(X) is relatively compact in X has a unique fixed point τ(f) ∈ X, which is attracting. Furthermore, we shall prove that τ(f) depends holomorphically on f in a suitable sense, generalizing results by Heins, Joseph-Kwack and the second author.