Usually, the maize cob is formed by grains of medium size. However, the extremes have larger or smaller size grains. The objective of this study was to investigate the influence of grain size from the same hybrid on t...Usually, the maize cob is formed by grains of medium size. However, the extremes have larger or smaller size grains. The objective of this study was to investigate the influence of grain size from the same hybrid on the physicochemical properties of isolated starch, crude maize flours and nixtamalized maize flours. Two hybrids, one from CIMMyT-Mexico called IMIC-254 and one commercial sample from Monsanto (Puma) were studied. The isolated starch granules from small, medium, and large grains exhibit the same size and distribution. The grain size has influence in the determination of cooking and steeping times;small grains reach these parameters faster than medium and large ones. The hardness of the grain size for both hybrids does not showed statistical differences between them. The starch from small, medium and large grains is mainly composed of amylopectin;this result is confirmed by X-ray diffraction and Megazine analysis. The apparent viscosity of the isolated starches of small grains showed statistically significant higher peak values. According to these results, it is possible to use small, medium, and large grains to obtain products with the same physicochemical properties, by adjusting the cooking and steeping times and Ca2+ content.展开更多
文摘Usually, the maize cob is formed by grains of medium size. However, the extremes have larger or smaller size grains. The objective of this study was to investigate the influence of grain size from the same hybrid on the physicochemical properties of isolated starch, crude maize flours and nixtamalized maize flours. Two hybrids, one from CIMMyT-Mexico called IMIC-254 and one commercial sample from Monsanto (Puma) were studied. The isolated starch granules from small, medium, and large grains exhibit the same size and distribution. The grain size has influence in the determination of cooking and steeping times;small grains reach these parameters faster than medium and large ones. The hardness of the grain size for both hybrids does not showed statistical differences between them. The starch from small, medium and large grains is mainly composed of amylopectin;this result is confirmed by X-ray diffraction and Megazine analysis. The apparent viscosity of the isolated starches of small grains showed statistically significant higher peak values. According to these results, it is possible to use small, medium, and large grains to obtain products with the same physicochemical properties, by adjusting the cooking and steeping times and Ca2+ content.