In this paper,we propose a neoteric and high-efficiency single image dehazing algorithm via contrast enhancement which is called STRASS(Spatio-Temporal Retinex-Inspired by an Averaging of Stochastic Samples)dehazing,i...In this paper,we propose a neoteric and high-efficiency single image dehazing algorithm via contrast enhancement which is called STRASS(Spatio-Temporal Retinex-Inspired by an Averaging of Stochastic Samples)dehazing,it is realized by constructing an efficient high-pass filter to process haze images and taking the influence of human vision system into account in image dehazing principles.The novel high-pass filter works by getting each pixel using RSR and computes the average of the samples.Then the low-pass filter resulting from the minimum envelope in STRESS framework has been replaced by the average of the samples.The final dehazed image is yielded after iterations of the high-pass filter.STRASS can be run directly without any machine learning.Extensive experimental results on datasets prove that STRASS surpass the state-of-the-arts.Image dehazing can be applied in the field of printing and packaging,our method is of great significance for image pre-processing before printing.展开更多
Ever since the invention of laser pulses,^(1–5)one of the key directions for the development of laser technology has been the creation of ever shorter pulses of light.Over the past sixty years,improvements in technol...Ever since the invention of laser pulses,^(1–5)one of the key directions for the development of laser technology has been the creation of ever shorter pulses of light.Over the past sixty years,improvements in technology have pushed pulse durations down from nanoseconds through picoseconds to femtoseconds,giving us access to time-resolved studies of molecular nuclear motion and chemical reactions.^(6)Just in time for the 59th birthday of the standard(SI)prefixes“femto”and“atto,”^(7)the 2023 Nobel Prize in Physics was awarded to the latest landmark in this effort:the generation of attosecond pulses of light,^(8–10)which opens a window to the most fundamental timescale of the world around us–the timescale of electrons moving inside atoms,molecules,and condensed matter.展开更多
基金This work was supported in part by National Natural Science Foundation of China under Grant 62076199in part by the Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety under Grant BTBD-2020KF08+2 种基金Beijing Technology and Business University,in part by the China Postdoctoral Science Foundation under Grant 2019M653784in part by Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences under Grant LSIT201801Din part by the Key R&D Project of Shaan’xi Province under Grant 2021GY-027。
文摘In this paper,we propose a neoteric and high-efficiency single image dehazing algorithm via contrast enhancement which is called STRASS(Spatio-Temporal Retinex-Inspired by an Averaging of Stochastic Samples)dehazing,it is realized by constructing an efficient high-pass filter to process haze images and taking the influence of human vision system into account in image dehazing principles.The novel high-pass filter works by getting each pixel using RSR and computes the average of the samples.Then the low-pass filter resulting from the minimum envelope in STRESS framework has been replaced by the average of the samples.The final dehazed image is yielded after iterations of the high-pass filter.STRASS can be run directly without any machine learning.Extensive experimental results on datasets prove that STRASS surpass the state-of-the-arts.Image dehazing can be applied in the field of printing and packaging,our method is of great significance for image pre-processing before printing.
文摘Ever since the invention of laser pulses,^(1–5)one of the key directions for the development of laser technology has been the creation of ever shorter pulses of light.Over the past sixty years,improvements in technology have pushed pulse durations down from nanoseconds through picoseconds to femtoseconds,giving us access to time-resolved studies of molecular nuclear motion and chemical reactions.^(6)Just in time for the 59th birthday of the standard(SI)prefixes“femto”and“atto,”^(7)the 2023 Nobel Prize in Physics was awarded to the latest landmark in this effort:the generation of attosecond pulses of light,^(8–10)which opens a window to the most fundamental timescale of the world around us–the timescale of electrons moving inside atoms,molecules,and condensed matter.