期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automated Metadata Annotation:What Is and Is Not Possible with Machine Learning
1
作者 Mingfang Wu Hans Brandhorst +3 位作者 Maria-Cristina Marinescu Joaquim More Lopez margorie hlava Joseph Busch 《Data Intelligence》 EI 2023年第1期122-138,共17页
Automated metadata annotation is only as good as training dataset,or rules that are available for the domain.It's important to learn what type of data content a pre-trained machine learning algorithm has been trai... Automated metadata annotation is only as good as training dataset,or rules that are available for the domain.It's important to learn what type of data content a pre-trained machine learning algorithm has been trained on to understand its limitations and potential biases.Consider what type of content is readily available to train an algorithm-what's popular and what's available.However,scholarly and historical content is often not available in consumable,homogenized,and interoperable formats at the large volume that is required for machine learning.There are exceptions such as science and medicine,where large,well documented collections are available.This paper presents the current state of automated metadata annotation in cultural heritage and research data,discusses challenges identified from use cases,and proposes solutions. 展开更多
关键词 Metadata annotation METADATA Machine learning Culture heritage Research data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部