期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Biodegradability of bioplastics in different aquatic environments:A systematic review
1
作者 maria cristina lavagnolo Valentina Poli +1 位作者 Anna maria Zampini Valentina Grossule 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第8期169-181,共13页
Bioplastics were first introduced as environmentally friendly materials,with properties similar to those of conventional plastics.A bioplastic is defined as biodegradable if it can be decomposed into carbon dioxide un... Bioplastics were first introduced as environmentally friendly materials,with properties similar to those of conventional plastics.A bioplastic is defined as biodegradable if it can be decomposed into carbon dioxide under aerobic degradation,or methane and CO_(2)under anaerobic conditions,inorganic compounds,and new cellular biomass,by the action of naturally occurring microorganisms.This definition however does not provide any information on the environmental conditions,timescale and extent at which decomposition processes should occur.With regard to the aquatic environment,recognized standards have been established to assess the ability of plastics to undergo biodegradation;however,these standards fail to provide clear targets to be met to allow labelling of a bioplastic as biodegradable.Moreover,these standards grant the user an extensive leeway in the choice of process parameters.For these reasons,the comparison of results deriving from different studies is challenging.The authors analysed and discussed the degree of biodegradability of a series of biodegradable bioplastics in aquatic environments(both fresh and salt water)using the results obtained in the laboratory and from on-site testing in the context of different research studies.Biochemical Oxygen Demand(BOD),CO_(2)evolution,surface erosion and weight loss were the main parameters used by researchers to describe the percentage of biodegradation.The results showed a large variability both in weight loss and BOD,even when evaluating the same type of bioplastics.This confirms the need for a reference range of values to be established with regard to parameters applied in defining the biodegradability of bioplastics. 展开更多
关键词 BIODEGRADATION Bioplastic PLASTIC Natural environment Plastic waste
原文传递
Methane oxidation and attenuation of sulphur compounds in landfill top cover systems: Lab-scale tests 被引量:1
2
作者 Roberto Raga Alberto Pivato +2 位作者 maria cristina lavagnolo Laura Megido Raffaello Cossu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第3期317-326,共10页
In this study,a top cover system is investigated as a control for emissions during the aftercare of new landfills and for old landfills where biogas energy production might not be profitable.Different materials were s... In this study,a top cover system is investigated as a control for emissions during the aftercare of new landfills and for old landfills where biogas energy production might not be profitable.Different materials were studied as landfill cover system in lab-scale columns:mechanical–biological pretreated municipal solid waste(MBP);mechanical–biological pretreated biowaste(PB);fine(PBSf)and coarse(PBSc)mechanical–biological pretreated mixtures of biowaste and sewage sludge,and natural soil(NS).The effectiveness of these materials in removing methane and sulphur compounds from a gas stream was tested,even coupled with activated carbon membranes.Concentrations of CO2,CH4,O2,N2,H2S and mercaptans were analysed at different depths along the columns.Methane degradation was assessed using mass balance and the results were expressed in terms of methane oxidation rate(MOR).The highest maximum and mean MOR were observed for MBP(17.2 g CH4/m^2/hr and 10.3 g CH4/m^2/hr,respectively).Similar values were obtained with PB and PBSc.The lowest values of MOR were obtained for NS(6.7 g CH4/m^2/hr)and PBSf(3.6 g CH4/m^2/hr),which may be due to their low organic content and void index,respectively.Activated membranes with high load capacity did not seem to have an influence on the methane oxidation process:MBP coupled with 220 g/m^2and 360 g/m^2membranes gave maximum MOR of 16.5 g CH4/m^2/hr and 17.4 g CH4/m^2/hr,respectively.Activated carbon membranes proved to be very effective on H2S adsorption.Furthermore,carbonyl sulphide,ethyl mercaptan and isopropyl mercaptan seemed to be easily absorbed by the filling materials. 展开更多
关键词 Emission reduction Greenhouse gas emissionLandfill Methane oxidation H2S Soil cover
原文传递
Use of oleaginous plants in phytotreatment of grey water and yellow water from source separation of sewage 被引量:1
3
作者 maria cristina lavagnolo Mario Malagoli +3 位作者 Luca Alibardi Francesco Garbo Alberto Pivato Raffaello Cossu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期274-282,共9页
Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management,source separation of yellow(urine),brown(faecal matter)and grey waters ai... Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management,source separation of yellow(urine),brown(faecal matter)and grey waters aims to recover the organic substances concentrated in brown water,the nutrients(nitrogen and phosphorous)in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management,a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants(suitable for biodiesel production)in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus(rapeseed),Glycine max(soybean)and Helianthus annuus(sunflower). Phytotreatment tests were carried out using 20 L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage,displaying high removal efficiencies of nutrients and organic substances(nitrogen 〉 80%; phosphorous 〉 90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters,where the characteristics of the two streams were reciprocally and beneficially integrated. 展开更多
关键词 Phytotreatment Sewage Source separation Decentralization Grey water Urine Energy crops
原文传递
Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling
4
作者 Munawar Ali Junli Zhang +6 位作者 Roberto Raga maria cristina lavagnolo Alberto Pivato Xu Wang Yuanyuan Zhang Raffaello Cossu Dongbei Yue 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2018年第3期79-87,共9页
This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis... This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m3) for the period of 30- 50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53q4 on w/w basis for the wastes AI, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353,215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90e/L Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation. 展开更多
关键词 Municipal solid waste (MSW)Aerobic pretreatment degree (APD)Volatile solids (VS)Intermittent aeration (IA)Landfill gasLandfilling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部