We have developed efficient numerical algorithms for solving 3D steadystate Poisson-Nernst-Planck(PNP)equations with excess chemical potentials described by the classical density functional theory(cDFT).The coupled PN...We have developed efficient numerical algorithms for solving 3D steadystate Poisson-Nernst-Planck(PNP)equations with excess chemical potentials described by the classical density functional theory(cDFT).The coupled PNP equations are discretized by a finite difference scheme and solved iteratively using the Gummel method with relaxation.The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation.Then,the algebraic multigrid method is applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations.A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed,which reduces computational complexity from O(N2)to O(NlogN),where N is the number of grid points.Integrals involving the Dirac delta function are evaluated directly by coordinate transformation,which yields more accurate results compared to applying numerical quadrature to an approximated delta function.Numerical results for ion and electron transport in solid electrolyte for lithiumion(Li-ion)batteries are shown to be in good agreement with the experimental data and the results from previous studies.展开更多
基金the Materials Synthesis and Simulation across Scales(MS3)Initiative(Laboratory Directed Research and Development(LDRD)Program)at Pacific Northwest National Laboratory(PNNL).Work by GL was supported by the U.S.Department of Energy(DOE)Office of Science’s Advanced Scientific Computing Research Applied Mathematics program and work by BZ by Early Career Award Initiative(LDRD Program)at PNNL.PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830.
文摘We have developed efficient numerical algorithms for solving 3D steadystate Poisson-Nernst-Planck(PNP)equations with excess chemical potentials described by the classical density functional theory(cDFT).The coupled PNP equations are discretized by a finite difference scheme and solved iteratively using the Gummel method with relaxation.The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation.Then,the algebraic multigrid method is applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations.A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed,which reduces computational complexity from O(N2)to O(NlogN),where N is the number of grid points.Integrals involving the Dirac delta function are evaluated directly by coordinate transformation,which yields more accurate results compared to applying numerical quadrature to an approximated delta function.Numerical results for ion and electron transport in solid electrolyte for lithiumion(Li-ion)batteries are shown to be in good agreement with the experimental data and the results from previous studies.