Heavy metal pollution in agricultural soils is a significant challenge for global food production and human health with the increasing industrialization and urbanization.There is a concern about introducing innovative ...Heavy metal pollution in agricultural soils is a significant challenge for global food production and human health with the increasing industrialization and urbanization.There is a concern about introducing innovative techni-ques that are eco-friendly,cost-effective,and have the potential to alleviate metals,enhance crop growth,and pro-tect plants against various environmental threats.For this,nanotechnology is one of the promising solutions having various applications in almost everyfield of life.This review explores various nano-based strategies that use nanoparticles(NPs)to lessen the harmful effects that heavy metals have on plants.Incorporated literature including published research and review papers from the year 2015 to 2023.This review paper gives a thorough review of the current situation regarding heavy metal contamination in agricultural soils and how it affects plant health.The necessity offinding practical and eco-friendly ways to address these issues is emphasized,paving the way for the introduction of NPs.Then,it highlighted the mechanistic route of heavy metal toxicity alleviation in plants by their application as well as their long-term efficiency and prospects.This review also elaborated on var-ious synthesis methods(physical,chemical,and green),but the emphasis on the green synthesis of NPs by utiliz-ing plant extract offers dependable and sustainable benefits over traditional physicochemical techniques.Under trace element stress,NPs application enhances plant antioxidant defense system,ameliorating structural changes,immobilizing trace elements in growth media,and improving the physio-chemical properties of soil as well.How-ever,there are still numerous limitations present on how these materials are synthesized,applied,and appropri-ately absorbed by plant cells.It is recommended to promote and fund long-term research to assess the long-term effects of using NPs on plant development,soil health,and possible environmental repercussions.展开更多
基金This work has been financially supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Project No.GRANTA513).
文摘Heavy metal pollution in agricultural soils is a significant challenge for global food production and human health with the increasing industrialization and urbanization.There is a concern about introducing innovative techni-ques that are eco-friendly,cost-effective,and have the potential to alleviate metals,enhance crop growth,and pro-tect plants against various environmental threats.For this,nanotechnology is one of the promising solutions having various applications in almost everyfield of life.This review explores various nano-based strategies that use nanoparticles(NPs)to lessen the harmful effects that heavy metals have on plants.Incorporated literature including published research and review papers from the year 2015 to 2023.This review paper gives a thorough review of the current situation regarding heavy metal contamination in agricultural soils and how it affects plant health.The necessity offinding practical and eco-friendly ways to address these issues is emphasized,paving the way for the introduction of NPs.Then,it highlighted the mechanistic route of heavy metal toxicity alleviation in plants by their application as well as their long-term efficiency and prospects.This review also elaborated on var-ious synthesis methods(physical,chemical,and green),but the emphasis on the green synthesis of NPs by utiliz-ing plant extract offers dependable and sustainable benefits over traditional physicochemical techniques.Under trace element stress,NPs application enhances plant antioxidant defense system,ameliorating structural changes,immobilizing trace elements in growth media,and improving the physio-chemical properties of soil as well.How-ever,there are still numerous limitations present on how these materials are synthesized,applied,and appropri-ately absorbed by plant cells.It is recommended to promote and fund long-term research to assess the long-term effects of using NPs on plant development,soil health,and possible environmental repercussions.