Methane cracking is considered a bridge technology between gray and green hydrogen production processes.In this work an experimental study of methane cracking in molten tin is performed.The tests were conducted in a q...Methane cracking is considered a bridge technology between gray and green hydrogen production processes.In this work an experimental study of methane cracking in molten tin is performed.The tests were conducted in a quartz reactor(i.d.=1.5 cm,L=20 cm)with capillary injection,varying temperature(950–1070℃),inlet methane flow rate(30–60 mL·min^(-1))and tin height(0–20 cm).The influence of the residence time in the tin and in the headspace on methane conversion and on carbon morphology was investigated.The conversions obtained in tin and in the empty reactor were measured and compared with results of detailed kinetic simulations(CRECK).Furthermore,an expression of a global kinetic constant for methane conversion in tin was also derived.The highest conversion(65%at Q_(0)=30 mL·min^(-1) and t=1070℃)is obtained for homogeneous gas phase reaction due to the long residence time(70 s),the presence of tin leads to a sharp decrease of residence time(1 s),obtaining a conversion of 35%at 1070℃,thus meaning that tin owns a role in the reaction.Carbon characterization(scanning electron microscopy,Raman)reported a change in carbon toward sheet-like structures and an increase of the carbon structural order in the presence of molten tin media.展开更多
文摘Methane cracking is considered a bridge technology between gray and green hydrogen production processes.In this work an experimental study of methane cracking in molten tin is performed.The tests were conducted in a quartz reactor(i.d.=1.5 cm,L=20 cm)with capillary injection,varying temperature(950–1070℃),inlet methane flow rate(30–60 mL·min^(-1))and tin height(0–20 cm).The influence of the residence time in the tin and in the headspace on methane conversion and on carbon morphology was investigated.The conversions obtained in tin and in the empty reactor were measured and compared with results of detailed kinetic simulations(CRECK).Furthermore,an expression of a global kinetic constant for methane conversion in tin was also derived.The highest conversion(65%at Q_(0)=30 mL·min^(-1) and t=1070℃)is obtained for homogeneous gas phase reaction due to the long residence time(70 s),the presence of tin leads to a sharp decrease of residence time(1 s),obtaining a conversion of 35%at 1070℃,thus meaning that tin owns a role in the reaction.Carbon characterization(scanning electron microscopy,Raman)reported a change in carbon toward sheet-like structures and an increase of the carbon structural order in the presence of molten tin media.