Anodic aluminium oxide (AAOM) membranes were used for template growth of carbon nanotubes (CNT) inside their pores by chemical vapour deposition (CVD) of different hydrocarbons, in the absence of transition meta...Anodic aluminium oxide (AAOM) membranes were used for template growth of carbon nanotubes (CNT) inside their pores by chemical vapour deposition (CVD) of different hydrocarbons, in the absence of transition metal catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and the external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity, and quality of CNTs in terms of diameter (up to very thin CNT), carbon order, length, arrangement (i.e. number of tubes for each channel), purity, that are critical requisites for several applications were optimised by investigating the effect of changing the hydrocarbon feedstock gas, also in the presence of hydrogen. The samples produced using methane as a feedstock have a well ordered structure. The role of the alumina channels surface during the CNT growth has been investigated and its catalytic activity has been proved for the first time.展开更多
基金supported by the CATHERINE FP7 European STREP Project(No.:216215)
文摘Anodic aluminium oxide (AAOM) membranes were used for template growth of carbon nanotubes (CNT) inside their pores by chemical vapour deposition (CVD) of different hydrocarbons, in the absence of transition metal catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and the external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity, and quality of CNTs in terms of diameter (up to very thin CNT), carbon order, length, arrangement (i.e. number of tubes for each channel), purity, that are critical requisites for several applications were optimised by investigating the effect of changing the hydrocarbon feedstock gas, also in the presence of hydrogen. The samples produced using methane as a feedstock have a well ordered structure. The role of the alumina channels surface during the CNT growth has been investigated and its catalytic activity has been proved for the first time.