The rare earth element contents of plant specimens of the families Rhamnaceae, Ampelozizyphus amazonicus Ducke (local name: Saracura-Mirá) and of Pteridófitas from genus Gleichenia sp. e Adiantum sp. (ferns)...The rare earth element contents of plant specimens of the families Rhamnaceae, Ampelozizyphus amazonicus Ducke (local name: Saracura-Mirá) and of Pteridófitas from genus Gleichenia sp. e Adiantum sp. (ferns) were determined and compared to those of the soils, in the Pitinga Mine area, Amazon, Brazil. The Pitinga mine district has large tin reserves genetically related to two granite bodies, Agua Boa e Madeira, both intrusive in volcanic rocks included in the Iricoumé Group. This deposit contains, also, bodies of cryolite and rare metals, such as Zr, Nb, Ta, Y and REE. The REE biogeochemical signatures, shown by the collected plants, reflect the patterns of the respective soils. The Eu and Ce anomalies shown by some plant samples are inherited from soils, as well. The higher contents of REE observed in fern samples confirm they are accumulators and reflect the abundance of REE in the soils of Pitinga Mine region. Additionally, that supports their potential use in geochemical exploration and bioremediation. The results of this study stress the importance of biogeochemical research integrated with geochemistry of soils, rocks and minerals.展开更多
文摘The rare earth element contents of plant specimens of the families Rhamnaceae, Ampelozizyphus amazonicus Ducke (local name: Saracura-Mirá) and of Pteridófitas from genus Gleichenia sp. e Adiantum sp. (ferns) were determined and compared to those of the soils, in the Pitinga Mine area, Amazon, Brazil. The Pitinga mine district has large tin reserves genetically related to two granite bodies, Agua Boa e Madeira, both intrusive in volcanic rocks included in the Iricoumé Group. This deposit contains, also, bodies of cryolite and rare metals, such as Zr, Nb, Ta, Y and REE. The REE biogeochemical signatures, shown by the collected plants, reflect the patterns of the respective soils. The Eu and Ce anomalies shown by some plant samples are inherited from soils, as well. The higher contents of REE observed in fern samples confirm they are accumulators and reflect the abundance of REE in the soils of Pitinga Mine region. Additionally, that supports their potential use in geochemical exploration and bioremediation. The results of this study stress the importance of biogeochemical research integrated with geochemistry of soils, rocks and minerals.