A ring R is Zhou nil-clean if every element in R is the sum of two tripotents and a nilpotent that commute. Homomorphic images of Zhou nil-clean rings are explored. We prove that a ring R is Zhou nil-clean if and only...A ring R is Zhou nil-clean if every element in R is the sum of two tripotents and a nilpotent that commute. Homomorphic images of Zhou nil-clean rings are explored. We prove that a ring R is Zhou nil-clean if and only if 30 ∈ R is nilpotent and R/30R is Zhou nil-clean, if and only if R/BM(R) is 5-potent and BM(R) is nil, if and only if J(R) is nil and R/J(R) is isomorphic to a Boolean ring, a Yaqub ring, a Bell ring or a direct product of such rings. By means of homomorphic images, we completely determine when the generalized matrix ring is Zhou nil-clean. We prove that the generalized matrix ring Mn(R; s) is Zhou nil-clean if and only if R is Zhou nil-clean and s ∈ J(R).展开更多
基金The authors are grateful to the referee for his/her careful the paper, and for the invaluable comments which improve our presentation reading of author H.Y. Chen was supported by the Natural Science Foundation of Zhejiang (No. LY17A010018), China. The first Province
文摘A ring R is Zhou nil-clean if every element in R is the sum of two tripotents and a nilpotent that commute. Homomorphic images of Zhou nil-clean rings are explored. We prove that a ring R is Zhou nil-clean if and only if 30 ∈ R is nilpotent and R/30R is Zhou nil-clean, if and only if R/BM(R) is 5-potent and BM(R) is nil, if and only if J(R) is nil and R/J(R) is isomorphic to a Boolean ring, a Yaqub ring, a Bell ring or a direct product of such rings. By means of homomorphic images, we completely determine when the generalized matrix ring is Zhou nil-clean. We prove that the generalized matrix ring Mn(R; s) is Zhou nil-clean if and only if R is Zhou nil-clean and s ∈ J(R).