期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D printed millireactors for process intensification
1
作者 Harrson S.Santana Alan C.Rodrigues +3 位作者 mariana g.m.lopes Felipe N.Russo Joao L.Silva Jr Osvaldir P.Taranto 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期180-190,共11页
The scope of the present research aims at demonstrating the 3D printing use in the manufacturing of microchannels for chemical process applications. A comparison among digital model processing applications for 3D prin... The scope of the present research aims at demonstrating the 3D printing use in the manufacturing of microchannels for chemical process applications. A comparison among digital model processing applications for 3D print(slicers) and a print layer thickness analysis were performed. The 3D print fidelity was verified in several devices, including the microchannels’ printing with and without micromixer zones. In order to highlight the 3D print potential in Chemical Engineering, the biodiesel synthesis was also carried out in a millireactor manufactured by 3D printing. The millireactor operated under laminar flow regime with a total flow rate of 75.25 ml·min^-1(increment of about 130 times over traditional microdevices used for biodiesel production).The printed millireactor provided a maximum yield of Ethyl Esters of 73.51% at 40 ℃, ethanol:oil molar ratio of7 and catalyst concentration of 1.25 wt% and residence time about 10 s. As a result of flow rate increment attained in the millireactor, the number of required units for scaling-up the chemical processes is reduced. Using the approach described in the present research, anyone could produce their own millireactor for chemical process in a simple way with the aid of a 3D printer. 展开更多
关键词 Process INTENSIFICATION 3D PRINTER Millireactors MICROMIXERS MICRODEVICES BIODIESEL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部