The aim of the study was to characterize humus system of natural and artificial products. Humus systems from leonardite, lignite biotransformed with Trichoderma sp. (Plantagra), plant materials after pyrolisis (cha...The aim of the study was to characterize humus system of natural and artificial products. Humus systems from leonardite, lignite biotransformed with Trichoderma sp. (Plantagra), plant materials after pyrolisis (charcoal) and composts are compared. Humus systems are characterized by Kononova-Belchikova's method, and heavy metals content was measured by atomic absorption spectroscopy (AAS). Humic acids from the International Humic Substances Society (IHSS) collection are the standards for humus substances quality of compared products. Data obtained for leonardite indicate that the studied substances from factory, Izmir, Turkey contain humic acids over 94%. Compared to the standard, heavy metals content in these materials demonstrate high amounts. Organic carbon content in the composts is very low compared to the leonardite materials and IHSS collection, where the heavy metals content is lower. Biotransformed lignite is characterized with lower content of organic carbon, but humic acids are with high degree of humification. Results obtained show that the fourth studied humus systems may be used in agriculture on base of the high humic acids content. It is recommended to measure heavy metals content before applying the materials in agriculture.展开更多
文摘The aim of the study was to characterize humus system of natural and artificial products. Humus systems from leonardite, lignite biotransformed with Trichoderma sp. (Plantagra), plant materials after pyrolisis (charcoal) and composts are compared. Humus systems are characterized by Kononova-Belchikova's method, and heavy metals content was measured by atomic absorption spectroscopy (AAS). Humic acids from the International Humic Substances Society (IHSS) collection are the standards for humus substances quality of compared products. Data obtained for leonardite indicate that the studied substances from factory, Izmir, Turkey contain humic acids over 94%. Compared to the standard, heavy metals content in these materials demonstrate high amounts. Organic carbon content in the composts is very low compared to the leonardite materials and IHSS collection, where the heavy metals content is lower. Biotransformed lignite is characterized with lower content of organic carbon, but humic acids are with high degree of humification. Results obtained show that the fourth studied humus systems may be used in agriculture on base of the high humic acids content. It is recommended to measure heavy metals content before applying the materials in agriculture.