Hydroxymethylfurfural (HMF) and furfural are promising chemicals for the creation of a bio-based economy. The development of an inexpensive catalytic system for converting cellulosic biomass into these chemicals is an...Hydroxymethylfurfural (HMF) and furfural are promising chemicals for the creation of a bio-based economy. The development of an inexpensive catalytic system for converting cellulosic biomass into these chemicals is an important step in this regard. Ferric sulphate is a common, cheap and non-toxic Lewis acid that has been used to catalyse reactions such as wood depolymerisation. In this work, ferric sulphate was used to help the production of HMF and furfural from hardwood and softwood pulps. It was found that for hardwood pulp, the use of ferric sulphate alone gave a maximum HMF yield of 31.6 mol-%. The addition of the ionic liquid [BMIM]Cl or HCl as co-catalysts did not lead to an increase in the yields obtained. A prior decationisation step, however, resulted in HMF yields of 50.4 mol-%. Softwood pulp was harder to depolymerise than hardwood, with a yield of 28.7% obtained using ferric sulphate alone. The maximum HMF yield from softwood, 37.9 mol-%, was obtained using a combination of ferric sulphate and dilute HCl. It was thus concluded that ferric sulphate is a promising catalyst for HMF synthesis from cellulosic biomass.展开更多
文摘Hydroxymethylfurfural (HMF) and furfural are promising chemicals for the creation of a bio-based economy. The development of an inexpensive catalytic system for converting cellulosic biomass into these chemicals is an important step in this regard. Ferric sulphate is a common, cheap and non-toxic Lewis acid that has been used to catalyse reactions such as wood depolymerisation. In this work, ferric sulphate was used to help the production of HMF and furfural from hardwood and softwood pulps. It was found that for hardwood pulp, the use of ferric sulphate alone gave a maximum HMF yield of 31.6 mol-%. The addition of the ionic liquid [BMIM]Cl or HCl as co-catalysts did not lead to an increase in the yields obtained. A prior decationisation step, however, resulted in HMF yields of 50.4 mol-%. Softwood pulp was harder to depolymerise than hardwood, with a yield of 28.7% obtained using ferric sulphate alone. The maximum HMF yield from softwood, 37.9 mol-%, was obtained using a combination of ferric sulphate and dilute HCl. It was thus concluded that ferric sulphate is a promising catalyst for HMF synthesis from cellulosic biomass.