期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Diophantine Equations and the Freeness of Mobius Groups
1
作者 marin gutan 《Applied Mathematics》 2014年第10期1400-1411,共12页
Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (... Let p and q be two fixed non zero integers verifying the condition gcd(p,q) = 1. We check solutions in non zero integers a1,b1,a2,b2 and a3 for the following Diophantine equations: (B1) (B2) . The equations (B1) and (B2) were considered by R.C. Lyndon and J.L. Ullman in [1] and A.F. Beardon in [2] in connection with the freeness of the M?bius group generated by two matrices of namely and where .?They proved that if one of the equations (B1) or (B2) has solutions in non zero integers then the group is not free. We give algorithms to decide if these equations admit solutions. We obtain an arithmetical criteria on p and q for which (B1) admits solutions. We show that for all p and q the equations (B1) and (B2) have only a finite number of solutions. 展开更多
关键词 Diophantine Equation Mobius Groups Free Group
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部