Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge pro...Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge product on the cathode side is crucial to achieve durable and efficient SOBs. In this work, the discharge efficiency of two graphene-based cathodes was evaluated and compared with that of a commercial gas diffusion layer. The discharge products formed at the surface of these cathodes in a glyme-based electrolyte were carefully studied using a range of characterization techniques. NaO_(2) was detected as the main discharge product regardless of the specific cathode material while small amounts of Na_(2)O_(2).2H_(2)O and carbonate-like side-products were detected by X-ray diffraction as well as by Raman and infrared spectroscopies. This work leverages the use of X-ray diffraction to determine the actual yield of NaO_(2)which is usually overlooked in this type of batteries. Thus, the proper quantification of the superoxide formed on the cathode surface is widely underestimated;even though is crucial for determining the efficiency of the battery while eliminating the parasitic chemistry in SOBs. Here, we develop an ex-situ analysis method to determine the amount of NaO_(2) generated upon discharge in SOBs by transmission X-ray diffraction and quantitative Rietveld analysis. This work unveils that the yield of NaO_(2) depends on the depth of discharge where high capacities lead to very low discharge efficiency, regardless of the used cathode. We anticipate that the methodology developed herein will provide a convenient diagnosis tool in future efforts to optimize the performance of the different cell components in SOBs.展开更多
基金the European Union (Graphene Flagship-Core 3, Grant number 881603) for the financial support of this workfunding by the Spanish Ministerio de Ciencia,Innovación y Universidades (MICINN),Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF) through project RTI2018-100832-B-I00financial support from Stand Up for Energy and the Swedish Energy Agency。
文摘Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge product on the cathode side is crucial to achieve durable and efficient SOBs. In this work, the discharge efficiency of two graphene-based cathodes was evaluated and compared with that of a commercial gas diffusion layer. The discharge products formed at the surface of these cathodes in a glyme-based electrolyte were carefully studied using a range of characterization techniques. NaO_(2) was detected as the main discharge product regardless of the specific cathode material while small amounts of Na_(2)O_(2).2H_(2)O and carbonate-like side-products were detected by X-ray diffraction as well as by Raman and infrared spectroscopies. This work leverages the use of X-ray diffraction to determine the actual yield of NaO_(2)which is usually overlooked in this type of batteries. Thus, the proper quantification of the superoxide formed on the cathode surface is widely underestimated;even though is crucial for determining the efficiency of the battery while eliminating the parasitic chemistry in SOBs. Here, we develop an ex-situ analysis method to determine the amount of NaO_(2) generated upon discharge in SOBs by transmission X-ray diffraction and quantitative Rietveld analysis. This work unveils that the yield of NaO_(2) depends on the depth of discharge where high capacities lead to very low discharge efficiency, regardless of the used cathode. We anticipate that the methodology developed herein will provide a convenient diagnosis tool in future efforts to optimize the performance of the different cell components in SOBs.