Extracting the light trapped in a waveguide,or the opposite effect of trapping light in a thin region and guiding it perpendicular to its incident propagation direction,is essential for optimal energetic performance i...Extracting the light trapped in a waveguide,or the opposite effect of trapping light in a thin region and guiding it perpendicular to its incident propagation direction,is essential for optimal energetic performance in illumination,display or light harvesting devices.Here we demonstrate that the paradoxical goal of letting as much light in or out while maintaining the wave effectively trapped can be achieved with a periodic array of interpenetrated fibers forming a photonic fiber plate.Photons entering perpendicular to that plate may be trapped in an intermittent chaotic trajectory,leading to an optically ergodic system.We fabricated such a photonic fiber plate and showed that for a solar cell incorporated on one of the plate surfaces,light absorption is greatly enhanced.Confirming this,we found the unexpected result that a more chaotic photon trajectory reduces the production of photon scattering entropy.展开更多
基金support from the Spanish MINECO(Severo Ochoa Program,grant no.SEV-2015-0522)the MINECO and the Fondo Europeo de Desarrollo Regional FEDER(grant no.MAT2014-52985-R)+3 种基金the Fundacio Privada Cellex,and from the EC FP7 Program(ICT-2011.35)under grant no.NMP3-SL-2013-604506support from the Spanish MINECO/FEDER(grant no.MAT2015-66128-R)support from the Spanish MINECO(grant no.ENE2014-56237-C4)Mexico’s grant program CONACyT.
文摘Extracting the light trapped in a waveguide,or the opposite effect of trapping light in a thin region and guiding it perpendicular to its incident propagation direction,is essential for optimal energetic performance in illumination,display or light harvesting devices.Here we demonstrate that the paradoxical goal of letting as much light in or out while maintaining the wave effectively trapped can be achieved with a periodic array of interpenetrated fibers forming a photonic fiber plate.Photons entering perpendicular to that plate may be trapped in an intermittent chaotic trajectory,leading to an optically ergodic system.We fabricated such a photonic fiber plate and showed that for a solar cell incorporated on one of the plate surfaces,light absorption is greatly enhanced.Confirming this,we found the unexpected result that a more chaotic photon trajectory reduces the production of photon scattering entropy.