Huntington's disease(HD) is a progressive and fatal neurodegenerative disorder caused by an expanded tri-nucleotide CAG sequence in huntingtin gene(HTT) on chromosome 4. HD manifests with chorea, cognitive and psy...Huntington's disease(HD) is a progressive and fatal neurodegenerative disorder caused by an expanded tri-nucleotide CAG sequence in huntingtin gene(HTT) on chromosome 4. HD manifests with chorea, cognitive and psychiatric symptoms. Although advances in genetics allow identification of individuals carrying the HD gene, much is still unknown about the mechanisms underly-ing the development of overt clinical symptoms and the transitional period between premanifestation and mani-festation of the disease. HD has no cure and patients rely only in symptomatic treatment. There is an urgent need to identify biomarkers that are able to monitor disease progression and assess the development and efficacy of novel disease modifying drugs. Over the past years, neuroimaging techniques such as magnetic resonance imaging(MRI) and positron emission tomog-raphy(PET) have provided important advances in our understanding of HD. MRI provides information about structural and functional organization of the brain, while PET can detect molecular changes in the brain. MRI and PET are able to detect changes in the brains of HD gene carriers years ahead of the manifestation of the dis-ease and have also proved to be powerful in assessingdisease progression. However, no single technique hasbeen validated as an optimal biomarker. An integrativemultimodal imaging approach, which combines differ-ent MRI and PET techniques, could be recommendedfor monitoring potential neuroprotective and preventivetherapies in HD. In this article we review the currentneuroimaging literature in HD.展开更多
文摘Huntington's disease(HD) is a progressive and fatal neurodegenerative disorder caused by an expanded tri-nucleotide CAG sequence in huntingtin gene(HTT) on chromosome 4. HD manifests with chorea, cognitive and psychiatric symptoms. Although advances in genetics allow identification of individuals carrying the HD gene, much is still unknown about the mechanisms underly-ing the development of overt clinical symptoms and the transitional period between premanifestation and mani-festation of the disease. HD has no cure and patients rely only in symptomatic treatment. There is an urgent need to identify biomarkers that are able to monitor disease progression and assess the development and efficacy of novel disease modifying drugs. Over the past years, neuroimaging techniques such as magnetic resonance imaging(MRI) and positron emission tomog-raphy(PET) have provided important advances in our understanding of HD. MRI provides information about structural and functional organization of the brain, while PET can detect molecular changes in the brain. MRI and PET are able to detect changes in the brains of HD gene carriers years ahead of the manifestation of the dis-ease and have also proved to be powerful in assessingdisease progression. However, no single technique hasbeen validated as an optimal biomarker. An integrativemultimodal imaging approach, which combines differ-ent MRI and PET techniques, could be recommendedfor monitoring potential neuroprotective and preventivetherapies in HD. In this article we review the currentneuroimaging literature in HD.