期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Systematic approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries
1
作者 Yuan Cao Jee-Jay J.Chen mark a.barteau 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期115-124,共10页
Polyoxometalates have been explored as multi-electron active species in both aqueous and non-aqueous redox flow batteries. Although non-aqueous systems in principle offer a wider voltage window for redox flow battery ... Polyoxometalates have been explored as multi-electron active species in both aqueous and non-aqueous redox flow batteries. Although non-aqueous systems in principle offer a wider voltage window for redox flow battery operation, realization of this potential requires a judicious choice of solvent as well as polyoxometalate properties. We demonstrate here the superior performance of N,N-dimethylformamide(DMF)compared to acetonitrile as a solvent for redox flow batteries based on Li3PMo12O40. This compound displays two 1-electron transfers in acetonitrile but can access an extra quasi-reversible 2-electron redox process in DMF. A cell containing 10 mM solution of Li3PMo12O40 in DMF produced a cell voltage of 0.7 V with 2-electron transfers(State of Charge = 60%) and showed a good cyclability. As a means to boost energy density, operation of the redox flow battery at a higher concentration of 0.1 M Li3PMo12O40 produced cells with cell voltage of 0.6 V in acetonitrile and a cell voltage of 1.0 V in DMF;both showed excellent coulombic efficiencies of more than 90% over the course of 30 cycles. Energy density was also increased by employing an asymmetric cell with different polyoxometalates on each side to extend cell voltage.Li6P2W18O62 exhibited 3 quasi-reversible 2-electron transfers in the potential range between-2.05 V and-0.5 V vs. Ag/Ag+. 10 mM Li6P2W18O62/Li3PMo12O40 in DMF produced a cell with cell voltage of 1.3 V involving 4-electron transfers(State of Charge = 50%) with coulombic efficiency of nearly 100% and energy efficiency of nearly 70% throughout the test with more than 20 cycles. These promising results demonstrate proof-of-concept approaches to improving the performance of polyoxometalates in non-aqueous redox flow batteries. 展开更多
关键词 POLYOXOMETALATE Energy density Redox flow battery Non-aqueous battery Cyclic voltammetry Bulk electrolysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部