期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitation of Pesticide Residue in Water and Food in Louisiana, USA 被引量:1
1
作者 Olubode Adeniyi Amy Hernandez +2 位作者 mark leblanc Joan King Marlene Janes 《Journal of Water Resource and Protection》 2016年第12期1145-1157,共14页
Pesticides can remain in the environment for decades and contaminate surface water that is used for irrigation of produce. This study examined pesticide residues in some surface waters and foods in Louisiana. Samples ... Pesticides can remain in the environment for decades and contaminate surface water that is used for irrigation of produce. This study examined pesticide residues in some surface waters and foods in Louisiana. Samples of 8 foods (tomato, corn, rice, blueberry, cucumber, cabbage, wheat and melon) and 35 surface waters were studied using a QuEChERS extraction method for food samples and liquid-liquid extraction method for the water samples. Gas chromatography-mass spectrometry was used to analyze water and food samples. Nine pesticides were detected in the surface water samples and 5 in the food samples. Pesticides detected in foods were below FDA tolerance limit but 0.18 ppm cypermethrin found in tomato was within 90% of the FDA limit (0.2 ppm). Four water samples had atrazine levels that were above the FDA limit for potable water. This study suggests the need to intermittently monitor pesticide contamination in our food and water. 展开更多
关键词 Gas Chromatography Mass Spectrometry QuEChERS CYPERMETHRIN ATRAZINE PESTICIDE FDA
下载PDF
Alleviation of Pesticide Residue in Surface Water
2
作者 Olubode Adeniyi Amy Hernandez +2 位作者 mark leblanc Joan M. King Marlene Janes 《Journal of Water Resource and Protection》 2017年第5期523-535,共13页
Reduction of environmental pollution incurred from pesticide use is very important. Zeolite is a natural mineral capable of removing certain chemical contaminants from water. This study was carried out to test the eff... Reduction of environmental pollution incurred from pesticide use is very important. Zeolite is a natural mineral capable of removing certain chemical contaminants from water. This study was carried out to test the effect of zeolite treatment on pesticide residue alleviation in surface water. Ten surface water samples were treated with natural zeolite by filtering through. An EPA method was used to extract pesticide residue from the water samples and the surfactant used to modify the net charge on the zeolite was hexadecyltrimethylammonium chloride (HDTMA-Cl). Gas chromatography-mass spectrometry was used to analyze water samples. Alleviation was achieved in all the 10 water samples that were filtered through zeolite. The highest removal of pesticides from water with zeolite included 100% of bifenthrin in sample CLC, atrazine in BPH, CDG and LBT;metolachlor in CLC, LBT, BCH, TRH2 and BPI;acetolachlor in BBH and BCH;azoxystrobin in BBH;desethylatrazine in BCH and BPI;metribuzin in BCH, TRH2 and BPI;and both clomazone and bromacil in sample BDC. A minimum reduction of 10.9% was found for metolachlor in sample BRH. Further reduction of pesticide residues up to 50% was recorded in the SMZ treatment as the concentrations of 4 out of 8 pesticide residues were reduced. This study confirms the potential of both the natural zeolite-Clinoptilolite, and SMZ of alleviating pesticide residues in water. 展开更多
关键词 EPA (United States Environmental Protection Agency) Gas Chromatography Mass Spectrometry ZEOLITE Hexadecyltrimethylammonium Chloride (HDTMA-Cl) Surface-Modified-Zeolite (SMZ) BIFENTHRIN METOLACHLOR METRIBUZIN Acetolachlor AZOXYSTROBIN Desethylatrazine CLOMAZONE Bromacil Atrazine Clinoptilolite Alleviation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部