Quantum error correction plays an important role in fault-tolerant quantum information processing.It is usually difficult to experimentally realize quantum error correction,as it requires multiple qubits and quantum g...Quantum error correction plays an important role in fault-tolerant quantum information processing.It is usually difficult to experimentally realize quantum error correction,as it requires multiple qubits and quantum gates with high fidelity.Here we propose a simple quantum error-correcting code for the detected amplitude damping channel.The code requires only two qubits.We implement the encoding,the channel,and the recovery on an optical platform,the IBM Q System,and a nuclear magnetic resonance system.For all of these systems,the error correction advantage appears when the damping rate exceeds some threshold.We compare the features of these quantum information processing systems used and demonstrate the advantage of quantum error correction on current quantum computing platforms.展开更多
基金supported by the National Natural Science Foundation for the Youth of China (11804410)partial support by the Foundation for Polish Science (IRAP project, ICTQT, contract No. 2018/MAB/5, cofinanced by EU within the Smart Growth Operational Programme)+5 种基金supported by the National Natural Science Foundation of China (11574291, 11774334)supported by the National Natural Science Foundation of China (11975117, 11875159, 11905099, and U1801661)Guangdong Basic and Applied Basic Research Foundation (2019A1515011383)Guangdong Provincial Key Laboratory (2019B121203002)supported by National Natural Science Foundation of China (61771278)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘Quantum error correction plays an important role in fault-tolerant quantum information processing.It is usually difficult to experimentally realize quantum error correction,as it requires multiple qubits and quantum gates with high fidelity.Here we propose a simple quantum error-correcting code for the detected amplitude damping channel.The code requires only two qubits.We implement the encoding,the channel,and the recovery on an optical platform,the IBM Q System,and a nuclear magnetic resonance system.For all of these systems,the error correction advantage appears when the damping rate exceeds some threshold.We compare the features of these quantum information processing systems used and demonstrate the advantage of quantum error correction on current quantum computing platforms.