The present paper introduces a new concept for passive turbine tip-leakage control. The basic idea of the method is the connection of the blade leading edge and the blade tip by an internal channel. Due to the differe...The present paper introduces a new concept for passive turbine tip-leakage control. The basic idea of the method is the connection of the blade leading edge and the blade tip by an internal channel. Due to the difference between the stagnation pressure at the leading edge and the low pressure at the blade tip, a small amount of the working fluid is extracted from the blade passage. At the blade tip, a jet is injected roughly perpendicular to the tip gap flow driven by the blade pressure difference. It is proposed that the jet blocks at least a part of the tip gap flow. Since the tip-leakage losses are proportional to the tip gap mass flow rate, the tip injection results in a reduction of the associated losses. After the introduction of the concept, an analytical model is presented which describes the reduction of the tip gap discharge coefficient due to the tip injection. Furthermore, the analytical model is supported by the results of a preliminary CFD analysis. Finally, the potential of the efficiency improvement by the passive blade tip injection method is reported.展开更多
文摘The present paper introduces a new concept for passive turbine tip-leakage control. The basic idea of the method is the connection of the blade leading edge and the blade tip by an internal channel. Due to the difference between the stagnation pressure at the leading edge and the low pressure at the blade tip, a small amount of the working fluid is extracted from the blade passage. At the blade tip, a jet is injected roughly perpendicular to the tip gap flow driven by the blade pressure difference. It is proposed that the jet blocks at least a part of the tip gap flow. Since the tip-leakage losses are proportional to the tip gap mass flow rate, the tip injection results in a reduction of the associated losses. After the introduction of the concept, an analytical model is presented which describes the reduction of the tip gap discharge coefficient due to the tip injection. Furthermore, the analytical model is supported by the results of a preliminary CFD analysis. Finally, the potential of the efficiency improvement by the passive blade tip injection method is reported.