Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from ...Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from AD 1564) were included. We present two proxy networks and corresponding reconstruction (transfer) models, one for tree-growth based proxies only and another for multiproxies. Both of them show a useful match in timing as well as amplitude with the AMO. These model structures demonstrated reasonable model performance (overall r<sup>2</sup> = 0.45 - 0.36). The time stability of proxy-AMO relationships was also validated. The new models produced acceptable results in cross-calibration-verification (reduction of error and coefficient of efficiency statistics in 1856-1921 and 1922-1990 vary between 0.41 and 0.21). The spatial distribution of these data series indicate that proxies respond to an AMO-like climatic oscillation over much of the Northern Hemisphere.展开更多
A number of numerical experiments with artificial random signals (the second order autoregressive processes), which have important statistical properties similar to that of the observed instrumental temperature (1850-...A number of numerical experiments with artificial random signals (the second order autoregressive processes), which have important statistical properties similar to that of the observed instrumental temperature (1850-2015), were carried out. The results show that in frame of the selected mathematical model the return period of climatic events, analogous to the current global warming (linear increase of temperature for 0.95°C during the last 135 years) is 2849-5180 years (one event per 2849-5180 years). This means that global warming (GW) of the last 135 years can unlikely be fully explained by inherent oscillations of the climatic system. It was found however, that natural fluctuations of climate may appreciably contribute to the GW. The return period of climatic episodes with 0.5°C warming during the 135 years (half of the observed GW) was less than 500 years. The result testifies that the role of external factors (emission of greenhouse gases, solar activity etc.) in the GW could be less than often presumed.展开更多
We analyzed a number of Antarctic climatic proxies including: 1) an annual proxy covering the time interval 1800-2003, 2) four low-resolution (tens to hundreds of years) ice core records covering the last 242,000 year...We analyzed a number of Antarctic climatic proxies including: 1) an annual proxy covering the time interval 1800-2003, 2) four low-resolution (tens to hundreds of years) ice core records covering the last 242,000 years. The main goal of the work was to search for traces of solar influence on Antarctic climate. Both Fourier and wavelet approaches were used in the statistical analyses. We found no evident fingerprints of solar cycles of Schwabe (ca 11 years), Hale (ca 22 years), Gleissberg (century-scale) or Hallstatt (ca 2000 years). Instead a strong variation with period ca 9800 - 11,600 years is present in the long temperature proxies during the last 242,000 years. It was shown that this variation likely was the result of varying CO2 concentration in the atmosphere, although some solar influence cannot be fully excluded. No features of a quasi 10,000 year variation were found in the Greenland δ18O record. The results show that solar-climatic relationship in Antarctica is weaker than in the high-latitude areas of the Northern Hemisphere.展开更多
The possible response of global climate to the changes of background radiation derived from satellite measurement during 1983-2001 is analyzed. Estimation is made by means of one-dimensional energy-balance climatic mo...The possible response of global climate to the changes of background radiation derived from satellite measurement during 1983-2001 is analyzed. Estimation is made by means of one-dimensional energy-balance climatic model. It is shown that the increase of the global surface radiation by 3 W × m–2 through 1983-2001 should result in a corresponding rise of temperature, which exceeds the actual observed values by 0.6?C - 2.0?C. Possible causes of such disagreement are discussed.展开更多
文摘Currently available proxies were studied as networks for building reconstruction models of the Atlantic Multidecadal Oscillation (AMO). Only proxies that would double the current record length (backwards in time from AD 1564) were included. We present two proxy networks and corresponding reconstruction (transfer) models, one for tree-growth based proxies only and another for multiproxies. Both of them show a useful match in timing as well as amplitude with the AMO. These model structures demonstrated reasonable model performance (overall r<sup>2</sup> = 0.45 - 0.36). The time stability of proxy-AMO relationships was also validated. The new models produced acceptable results in cross-calibration-verification (reduction of error and coefficient of efficiency statistics in 1856-1921 and 1922-1990 vary between 0.41 and 0.21). The spatial distribution of these data series indicate that proxies respond to an AMO-like climatic oscillation over much of the Northern Hemisphere.
文摘A number of numerical experiments with artificial random signals (the second order autoregressive processes), which have important statistical properties similar to that of the observed instrumental temperature (1850-2015), were carried out. The results show that in frame of the selected mathematical model the return period of climatic events, analogous to the current global warming (linear increase of temperature for 0.95°C during the last 135 years) is 2849-5180 years (one event per 2849-5180 years). This means that global warming (GW) of the last 135 years can unlikely be fully explained by inherent oscillations of the climatic system. It was found however, that natural fluctuations of climate may appreciably contribute to the GW. The return period of climatic episodes with 0.5°C warming during the 135 years (half of the observed GW) was less than 500 years. The result testifies that the role of external factors (emission of greenhouse gases, solar activity etc.) in the GW could be less than often presumed.
文摘We analyzed a number of Antarctic climatic proxies including: 1) an annual proxy covering the time interval 1800-2003, 2) four low-resolution (tens to hundreds of years) ice core records covering the last 242,000 years. The main goal of the work was to search for traces of solar influence on Antarctic climate. Both Fourier and wavelet approaches were used in the statistical analyses. We found no evident fingerprints of solar cycles of Schwabe (ca 11 years), Hale (ca 22 years), Gleissberg (century-scale) or Hallstatt (ca 2000 years). Instead a strong variation with period ca 9800 - 11,600 years is present in the long temperature proxies during the last 242,000 years. It was shown that this variation likely was the result of varying CO2 concentration in the atmosphere, although some solar influence cannot be fully excluded. No features of a quasi 10,000 year variation were found in the Greenland δ18O record. The results show that solar-climatic relationship in Antarctica is weaker than in the high-latitude areas of the Northern Hemisphere.
文摘The possible response of global climate to the changes of background radiation derived from satellite measurement during 1983-2001 is analyzed. Estimation is made by means of one-dimensional energy-balance climatic model. It is shown that the increase of the global surface radiation by 3 W × m–2 through 1983-2001 should result in a corresponding rise of temperature, which exceeds the actual observed values by 0.6?C - 2.0?C. Possible causes of such disagreement are discussed.