To the Editor,We read with great interest the recent review by Limongi et al.on sepsis biomarkers[1].Recently,the combined use of two biomarkers,procalcitonin(PCT)and mid-regional proadrenomedullin(MR-pro ADM)has been...To the Editor,We read with great interest the recent review by Limongi et al.on sepsis biomarkers[1].Recently,the combined use of two biomarkers,procalcitonin(PCT)and mid-regional proadrenomedullin(MR-pro ADM)has been reported in sepsis diagnosis and prognosis.PCT is a polypeptide produced as a precursor of calcitonin by thyroid C cells normally展开更多
Objective: To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever(a mosquito-borne disease) and to perform selective pressure analysis and homology modelling.Methods: Nine different datasets were...Objective: To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever(a mosquito-borne disease) and to perform selective pressure analysis and homology modelling.Methods: Nine different datasets were built, one for each protein(from protein C to non-structural protein 4) and the last one for the complete genome. Selective pressure and homology modelling analyses were applied. Results: Two main clades(A and B) were pointed in the maximum likelihood tree. The clade A included five Brazilian sequences sampled from 1955 to 2015. The Brazilian sequence sampled in 2014 significantly clustered with the Haitian sequence sampled in 2015. The clade B included the remaining 27 sequences sampled in the Central and Southern America from 1957 to 2013. Selective pressure analysis revealed several sites under episodic diversifying selection in envelope surface glycoprotein El, non-structural protein 1 and nonstructural protein 3 with a posterior probability P≤0.01. Homology modelling showed different sites modified by selective pressure and some protein-protein interaction sites at high interaction propensity. Conclusion: Maximum likelihood analysis confirmed the Mayaro virus previous circulation in Haiti and the successful spread to the Caribbean and USA. Selective pressure analysis revealed a strong presence of negatively selected sites, suggesting a probable purging of deleterious polymorphisms in functional genes. Homology model showed the position 31, under selective pressure, located in the edge of the ADP-ribose binding site predicting to possess a high potential of protein-protein interaction and suggesting the possible chance for a protective vaccine,thus preventing Mayaro virus urbanization as with Chikungunya virus.展开更多
文摘To the Editor,We read with great interest the recent review by Limongi et al.on sepsis biomarkers[1].Recently,the combined use of two biomarkers,procalcitonin(PCT)and mid-regional proadrenomedullin(MR-pro ADM)has been reported in sepsis diagnosis and prognosis.PCT is a polypeptide produced as a precursor of calcitonin by thyroid C cells normally
文摘Objective: To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever(a mosquito-borne disease) and to perform selective pressure analysis and homology modelling.Methods: Nine different datasets were built, one for each protein(from protein C to non-structural protein 4) and the last one for the complete genome. Selective pressure and homology modelling analyses were applied. Results: Two main clades(A and B) were pointed in the maximum likelihood tree. The clade A included five Brazilian sequences sampled from 1955 to 2015. The Brazilian sequence sampled in 2014 significantly clustered with the Haitian sequence sampled in 2015. The clade B included the remaining 27 sequences sampled in the Central and Southern America from 1957 to 2013. Selective pressure analysis revealed several sites under episodic diversifying selection in envelope surface glycoprotein El, non-structural protein 1 and nonstructural protein 3 with a posterior probability P≤0.01. Homology modelling showed different sites modified by selective pressure and some protein-protein interaction sites at high interaction propensity. Conclusion: Maximum likelihood analysis confirmed the Mayaro virus previous circulation in Haiti and the successful spread to the Caribbean and USA. Selective pressure analysis revealed a strong presence of negatively selected sites, suggesting a probable purging of deleterious polymorphisms in functional genes. Homology model showed the position 31, under selective pressure, located in the edge of the ADP-ribose binding site predicting to possess a high potential of protein-protein interaction and suggesting the possible chance for a protective vaccine,thus preventing Mayaro virus urbanization as with Chikungunya virus.