For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating cur...For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating curves are combined with the HEC-6 model to investigate the effects of river engineering measures on the Elbe River system. In such situations, the uncertainty originating from the HEC-6 model is of significant importance for the reliability of the rating curves and the corresponding DSS results. This paper proposes a two-step approach to analyze the uncertainty in the rating curves and propagate it into the Elbe DSS: analytic method and Latin Hypercube simulation. Via this approach the uncertainty and sensitivity of model outputs to input parameters are successfully investigated. The results show that the proposed approach is very efficient in investigating the effect of uncertainty and can play an important role in improving decision-making under uncertainty.展开更多
基金Project (No. 02CDP036) supported by the Royal Netherlands Academy of Arts and Sciences (KNAW), the Netherlands
文摘For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating curves are combined with the HEC-6 model to investigate the effects of river engineering measures on the Elbe River system. In such situations, the uncertainty originating from the HEC-6 model is of significant importance for the reliability of the rating curves and the corresponding DSS results. This paper proposes a two-step approach to analyze the uncertainty in the rating curves and propagate it into the Elbe DSS: analytic method and Latin Hypercube simulation. Via this approach the uncertainty and sensitivity of model outputs to input parameters are successfully investigated. The results show that the proposed approach is very efficient in investigating the effect of uncertainty and can play an important role in improving decision-making under uncertainty.