The influence of a Co or phthalocyanine (Pc) molecular overlayer on the properties of quantum-well resonances (QWR) in Cu layers atop Co(001) is studied by means of spin-polarized electron reflection. For Co atoms and...The influence of a Co or phthalocyanine (Pc) molecular overlayer on the properties of quantum-well resonances (QWR) in Cu layers atop Co(001) is studied by means of spin-polarized electron reflection. For Co atoms and Pc molecules, an energy shift of the QWR-induced signal is observed with increasing coverage and is attributed to a variation of the electron reflection phase at the Cu/Co and Cu/Pc interface. For Co we find a linear energy shift in the Cu QWR energy position with increasing coverage down to the sub-monolayer regime. This shows that the phase accumulation model remains accurate within the sub-monolayer regime of a discontinuous interface. An opposite sign in the energy shift between Co and Pc overlayers could reflect an opposite impact on the Cu surface work function of overlayer adsorption.展开更多
文摘The influence of a Co or phthalocyanine (Pc) molecular overlayer on the properties of quantum-well resonances (QWR) in Cu layers atop Co(001) is studied by means of spin-polarized electron reflection. For Co atoms and Pc molecules, an energy shift of the QWR-induced signal is observed with increasing coverage and is attributed to a variation of the electron reflection phase at the Cu/Co and Cu/Pc interface. For Co we find a linear energy shift in the Cu QWR energy position with increasing coverage down to the sub-monolayer regime. This shows that the phase accumulation model remains accurate within the sub-monolayer regime of a discontinuous interface. An opposite sign in the energy shift between Co and Pc overlayers could reflect an opposite impact on the Cu surface work function of overlayer adsorption.