Nowadays, purely organic materials with delayed fluorescence (DF) are being enthusiastically developed and extensively utilized as light-emitting materials to fabricate OLEDs because of their high exciton utilizatio...Nowadays, purely organic materials with delayed fluorescence (DF) are being enthusiastically developed and extensively utilized as light-emitting materials to fabricate OLEDs because of their high exciton utilization and metal-flee nature. These DF materials usually have a small single-triplet splitting (AEsT), and the nonradiative triplet excitons (75%) can be converted into radiative singlet excitons via thermally promoted reverse intersystem crossing (RISC) processes,展开更多
文摘Nowadays, purely organic materials with delayed fluorescence (DF) are being enthusiastically developed and extensively utilized as light-emitting materials to fabricate OLEDs because of their high exciton utilization and metal-flee nature. These DF materials usually have a small single-triplet splitting (AEsT), and the nonradiative triplet excitons (75%) can be converted into radiative singlet excitons via thermally promoted reverse intersystem crossing (RISC) processes,