We investigate the influence of a gravitational wave background on particles in circular motion. We are especially interested in waves leading to stationary orbits. This consideration is limited to circular orbits per...We investigate the influence of a gravitational wave background on particles in circular motion. We are especially interested in waves leading to stationary orbits. This consideration is limited to circular orbits perpendicular to the incidence direction. As a main result of our calculation, we obtain in addition to the well-known alteration of the radial distance a time dependent correction term for the phase modifying the circular motion of the particle. A background of gravitational waves creates some kind of uncertainty.展开更多
This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a...This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a massive particle in curved space-time of GR using the Schwarzschild metric. The result is a Schrödinger equation of the particle which is automatically subjected to Newtons’s gravitational potential.展开更多
文摘We investigate the influence of a gravitational wave background on particles in circular motion. We are especially interested in waves leading to stationary orbits. This consideration is limited to circular orbits perpendicular to the incidence direction. As a main result of our calculation, we obtain in addition to the well-known alteration of the radial distance a time dependent correction term for the phase modifying the circular motion of the particle. A background of gravitational waves creates some kind of uncertainty.
文摘This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a massive particle in curved space-time of GR using the Schwarzschild metric. The result is a Schrödinger equation of the particle which is automatically subjected to Newtons’s gravitational potential.