Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-d...Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.展开更多
基金supported by the National Key Basic Research Program of China(Grant No.2013CB328703)the National Natural Science Foundation of China(Grant Nos.11374026,91221304 and 11121091)
文摘Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.