The seasonal variation and quality status of groundwater systems of Kamiti-Marengeta sub-catchment were evaluated through analysis of boreholes and 17 shallow wells water samples in May 2016 and September 2017. Conseq...The seasonal variation and quality status of groundwater systems of Kamiti-Marengeta sub-catchment were evaluated through analysis of boreholes and 17 shallow wells water samples in May 2016 and September 2017. Consequently, the results were compared against the Kenya Bureau of Standards (KEBS) and World Health Organization (WHO) guidelines for drinking water purposes, and its suitability for drinking was established. The results showed that turbidity, calcium, potassium, iron, and fluoride levels in some of the boreholes and pH, calcium, sodium, and iron levels in some shallow wells exceeded the KEBS and WHO standards for drinking water quality. Turbidity, dissolved oxygen, and total hardness significantly varied across the regions of the study, and one-way ANOVA (P < 0.05) indicated a significant difference in the mean concentration of electrical conductivity, turbidity, total hardness, calcium, and iron in boreholes and in all parameters in shallow wells except for magnesium during the two seasons. The findings of this study provide baseline information on the quality of the groundwater systems of the area. It also contributes to knowledge on seasonal variation of groundwater quality of volcanic aquifers like the Nairobi Aquifer System (NAS) which is important for water quality monitoring.展开更多
文摘The seasonal variation and quality status of groundwater systems of Kamiti-Marengeta sub-catchment were evaluated through analysis of boreholes and 17 shallow wells water samples in May 2016 and September 2017. Consequently, the results were compared against the Kenya Bureau of Standards (KEBS) and World Health Organization (WHO) guidelines for drinking water purposes, and its suitability for drinking was established. The results showed that turbidity, calcium, potassium, iron, and fluoride levels in some of the boreholes and pH, calcium, sodium, and iron levels in some shallow wells exceeded the KEBS and WHO standards for drinking water quality. Turbidity, dissolved oxygen, and total hardness significantly varied across the regions of the study, and one-way ANOVA (P < 0.05) indicated a significant difference in the mean concentration of electrical conductivity, turbidity, total hardness, calcium, and iron in boreholes and in all parameters in shallow wells except for magnesium during the two seasons. The findings of this study provide baseline information on the quality of the groundwater systems of the area. It also contributes to knowledge on seasonal variation of groundwater quality of volcanic aquifers like the Nairobi Aquifer System (NAS) which is important for water quality monitoring.