期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CNN-RNN based method for license plate recognition 被引量:5
1
作者 Palaiahnakote Shivakumara Dongqi Tang +3 位作者 maryam asadzadehkaljahi Tong Lu Umapada Pal Mohammad Hossein Anisi 《CAAI Transactions on Intelligence Technology》 2018年第3期169-175,共7页
Achieving good recognition results for License plates is challenging due to multiple adverse factors. For instance, in Malaysia, where private vehicle (e.g., cars) have numbers with dark background, while public veh... Achieving good recognition results for License plates is challenging due to multiple adverse factors. For instance, in Malaysia, where private vehicle (e.g., cars) have numbers with dark background, while public vehicle (taxis/cabs) have numbers with white background. To reduce the complexity of the problem, we propose to classify the above two types of images such that one can choose an appropriate method to achieve better results. Therefore, in this work, we explore the combination of Convolutional Neural Networks (CNN) and Recurrent Neural Networks namely, BLSTM (Bi-Directional Long Short Term Memory), for recognition. The CNN has been used for feature extraction as it has high discriminative ability, at the same time, BLSTM has the ability to extract context information based on the past information. For classification, we propose Dense Cluster based Voting (DCV), which separates foreground and background for successful classification of private and public. Experimental results on live data given by MIMOS, which is funded by Malaysian Government and the standard dataset UCSD show that the proposed classification outperforms the existing methods. In addition, the recognition results show that the recognition performance improves significantly after classification compared to before classification. 展开更多
关键词 车牌识别 识别率 发展现状 人工智能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部