Achieving good recognition results for License plates is challenging due to multiple adverse factors. For instance, in Malaysia, where private vehicle (e.g., cars) have numbers with dark background, while public veh...Achieving good recognition results for License plates is challenging due to multiple adverse factors. For instance, in Malaysia, where private vehicle (e.g., cars) have numbers with dark background, while public vehicle (taxis/cabs) have numbers with white background. To reduce the complexity of the problem, we propose to classify the above two types of images such that one can choose an appropriate method to achieve better results. Therefore, in this work, we explore the combination of Convolutional Neural Networks (CNN) and Recurrent Neural Networks namely, BLSTM (Bi-Directional Long Short Term Memory), for recognition. The CNN has been used for feature extraction as it has high discriminative ability, at the same time, BLSTM has the ability to extract context information based on the past information. For classification, we propose Dense Cluster based Voting (DCV), which separates foreground and background for successful classification of private and public. Experimental results on live data given by MIMOS, which is funded by Malaysian Government and the standard dataset UCSD show that the proposed classification outperforms the existing methods. In addition, the recognition results show that the recognition performance improves significantly after classification compared to before classification.展开更多
基金This research work was supported by the Faculty of Computer Science and Information Technology, the University of Malaya under a special allocation of Post Graduate Funding for the RP036B-15AET project. The work described in this paper was supported by the Natural Science Foundation of China under grant no. 61672273, and the Science Foundation for Distinguished Young Scholars of Jiangsu under grant no. BK20160021.
文摘Achieving good recognition results for License plates is challenging due to multiple adverse factors. For instance, in Malaysia, where private vehicle (e.g., cars) have numbers with dark background, while public vehicle (taxis/cabs) have numbers with white background. To reduce the complexity of the problem, we propose to classify the above two types of images such that one can choose an appropriate method to achieve better results. Therefore, in this work, we explore the combination of Convolutional Neural Networks (CNN) and Recurrent Neural Networks namely, BLSTM (Bi-Directional Long Short Term Memory), for recognition. The CNN has been used for feature extraction as it has high discriminative ability, at the same time, BLSTM has the ability to extract context information based on the past information. For classification, we propose Dense Cluster based Voting (DCV), which separates foreground and background for successful classification of private and public. Experimental results on live data given by MIMOS, which is funded by Malaysian Government and the standard dataset UCSD show that the proposed classification outperforms the existing methods. In addition, the recognition results show that the recognition performance improves significantly after classification compared to before classification.