期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Conventional Geothermal Systems and Unconventional Geothermal Developments: An Overview 被引量:1
1
作者 maryam khodayar Sveinbjörn Björnsson 《Open Journal of Geology》 CAS 2024年第2期196-246,共51页
This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste... This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development. 展开更多
关键词 Conventional Geothermal Systems Unconventional Geothermal Developments Shallow and Deep Closed-Loops Enhanced Geothermal Systems Supercritical and Millimeter-Wave Drilling
下载PDF
Fracture Permeability: Outcrop Analogues from Active Plate Boundaries and Intraplate Contexts of Iceland
2
作者 maryam khodayar Sveinbjörn Björnsson 《Open Journal of Geology》 2021年第12期621-657,共37页
We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reyk... We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reykjafjall-RF), and the Reykjanes oblique rift (RP). WI formed at Tertiary plate boundaries, shifted away, is now cut by the Quaternary intraplate Sn<span style="white-space:nowrap;">&#230;</span>fellsnes volcanic zone (SVZ), and undergoes occasional earthquakes. By contrast, fractures are being formed and reactivated under intense plate boundary earthquakes in the younger SISZ, RF and RP. Our mapping of stratigraphy, basement fractures, surface ruptures of earthquakes, and leakages of cold and hot water in all areas shows that: 1) In active SISZ, RF and RP, permeable fractures are identical to N-S to NNW dextral, ENE to E-W sinistral, and WNW to NNW sinistral source faults of earthquakes, acting as Riedel shears that accommodate the sinistral motion of the transform zone. The NNE/NE rift-parallel extensional fractures are the least frequent permeable set. Notably, the NW and WNW sets also show dextral motions in RP where they could be splay of each other but belong to a separate developed fracture system, and in the SISZ where the NW set is a splay of a N-S source fault of earthquake. However, permeable fractures in the intraplate WI are only oblique-slip sets striking N-S to NNW dextral, ENE sinistral, and WNW dextral parallel to the SVZ. 2) In each area, the permeable sets fit the fault plane solutions of intraplate or plate boundary earthquakes, as well as the latest stress fields that allow fracture opening for fluid flow. 3) Fractures are more open in the younger SISZ, RF, and RP, with leakages along the fractures and their splays rather than by their tips or in the stepovers. In the older WI where the crust and fractures are filled with secondary minerals, leakages are as much along fractures as where numerous fracture intersections facilitate fluid flow. 4) In case of intersecting fractures, the strike and dip direction of the structures determine which set acts as a carrier or a barrier to the flow. 5) Although Iceland is more known for rifting, these analogues demonstrate that fracture permeability, block compartmentalisation, and fluid flow are controlled by the oblique-slip structures developed under transform mechanism. 展开更多
关键词 Fracture Permeability Fluid Flow Fractured Reservoirs Rift Zone Transform Zone Tectonic of Iceland
下载PDF
Tectonic Control of the Reykjanes Geothermal Field in the Oblique Rift of SW Iceland:From Regional to Reservoir Scales 被引量:2
3
作者 maryam khodayar Sveinbjorn Bjornsson +3 位作者 Egill Arni Guonason Steintór Níelsson Guoni Axelsson Catherine Hickson 《Open Journal of Geology》 2018年第3期333-382,共50页
This paper presents a multidisciplinary structural analysis of the Reykjanes Peninsula where Holocene deformation of a young oblique rift controls the geothermal processes in presence of a transform segment. The new s... This paper presents a multidisciplinary structural analysis of the Reykjanes Peninsula where Holocene deformation of a young oblique rift controls the geothermal processes in presence of a transform segment. The new structural map from aerial images and outcrops is correlated with selected surface and subsurface data and shows a complex pattern: NNE extensional rift structures, N-S dextral and ENE sinistral oblique-slip Riedel shears of the transform zone, and WNW and NW dextral oblique-slip faults. Shear fractures are more common, and along with the NNE fractures, they compartmentalise the crustal blocks at any scale. The fractures are within two ENE Riedel shear zones, indicating a minimum 7.5 km wide transform zone. The greatly deformed Southern Riedel Shear Zone is bounded to the north and the south by the 1972 and the 2013 earthquake swarms. This shear zone contains the geothermal field in a highly fractured block to the west of a major NW structure. Some of the deformations are: a) clockwise rotation of rift structures by the 1972 earthquake zone, inducing local compression;b) magma injection into extensional and oblique-slip shear fractures;c) reactivation of rift structures by transform zone earthquakes;d) tectonic control of reservoir boundaries by WNW and ENE shear fractures, and the distribution of surface alteration, fumaroles, CO2 flux, reservoir fluid flow and the overall shape of pressure drawdown by N-S, ENE, WNW/NW and NNE fractures. Results demonstrate the role of seismo-tectonic boundaries beyond which fault types and density change, with implications for permeability. 展开更多
关键词 Oblique Rift Transform Zone Reykjanes Peninsula Tectonic Control of Geothermal Activity Fractured Reservoir
下载PDF
Structures and Styles of Deformation in Rift,Ridge,Transform Zone,Oblique Rift and a Microplate Offshore/Onshore North Iceland 被引量:1
4
作者 maryam khodayar Sveinbjorn Bjornsson 《International Journal of Geosciences》 2018年第8期461-511,共51页
The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique R... The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique Rift (GOR), the Húsavík-Flatey Fault (HFF), and the Dalvík Lineament (DL). While active deformation is well-known, the structural pattern is sporadically mapped and a comprehensive account of the upper Tertiary-present deformation is not fully at hand. To address the gaps, this paper provides new regional tectonic maps with continuous coverage, and detailed analyses of the deformation. Faults, open fractures, prominent joints and volcanic edifices were identified on Multibeam/Single beam, Spot 5, and Digital Elevation Model, and subjected to multidisciplinary structural analysis and correlation with selected data. Some of the results are: 1) Six sets constitute the structural pattern. The N-S rift-parallel normal faults are 1/3, and the shear fractures of the transform zone and the oblique rift 2/3 of the fracture population. The en échelon arrangements above deep-seated shear zones indicate dextral slip on WNW to NW, and sinistral slip on NNE to ENE faults, conformable with earthquake data. 2) During the polyphase tectonic, the six sets led to basin and horst formation, block compartmentalisation, rotation, horsetail splay, rhomb-graben in relay zone of strike-slips, and volcanism. 3) Listric faults are absent and the steeply-dipping faults are antithetic, synthetic, or form extensional flower structures above 4 km depth. The Plio-pleistocene/present syn-sedimentary deformation caused a deep half graben in the Eyjafjarearáll Basin (Ey), fault growth, rollover, and sediment onlaps, with some of the faults still active. 4) The plate boundaries of K-R/Ey, GOR/?xarfjreur/NRZ, and DL delimit a major microplate labelled here as Grímsey-Tj?rnes-Dalvík. 5) The WNW earthquake cluster in GOR corresponds either to a blind horsetail splay fault or to initiation of a transform segment parallel to the HFF. The described tectonic-sedimentary-magmatic deformation is relevant to other diverging plate boundaries where similar sets control the hydrocarbon and geothermal resources. 展开更多
关键词 Kolbeinsey Ridge Iceland Northern Rift Zone Tjornes Transform Zone Grimsey Oblique Rift Grimsey-Tjornes-Dalvík Microplate Magmatic/Sedimentary/Tectonic Processes
下载PDF
Unstable Rifts,a Leaky Transform Zone and a Microplate:Analogues from South Iceland 被引量:1
5
作者 maryam khodayar Sveinbjorn Bjornsson +1 位作者 Skúli Víkingsson Guorún Sigríour Jonsdottir 《Open Journal of Geology》 2020年第4期317-367,共51页
A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Z... A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Zone (WRZ). The age of the oceanic crust in these areas is 3.4 Ma to present. About 20,000 fracture segments on aerial images reflect the dominance of NNE extensional structures in the WRZ. Around 9,000 basement faults, intrusions, secondary fractures, surface ruptures of earthquakes, and leakages were mapped in the outcrops of the HMP and the SISZ. About 23% of these fractures strike NNE, while 77% are dominantly northerly dextral and ENE sinistral, and secondarily E-W, WNW and NW sinistral strike- and oblique-slip structures, forming a Riedel shear pattern typical of a transform zone. Dyke injections into Riedel shears indicate a leaky transform zone. Fractures reactivated, accumulated slip, and re-opened for fluid flow. The ENE faults dip mostly to the southeast and could be the present boundary of the SISZ to the north. A 10 - 30 km wide ENE structural zone hosts a valley to the east, which could be deeper in the west. This ENE zone contains all the earthquakes, dominant ENE rivers, frequent ENE secondary fractures, and is likely the active part of the SISZ. The HMP does not show rotation since 3.4 Ma despite being between two rift segments. Future propagation/recession of the rift segments along their N55&deg;E sections would cause a migration and a clockwise rotation of the SISZ from ENE to E-W. The boundary faults of the SISZ would then be E-W, with unchanged internal Riedel shears, compensating its sinistral motion. Insights into complexities of diverging plate boundaries are critical for resource management in such tectonic contexts. 展开更多
关键词 Unstable Diverging Plate Boundaries South Iceland Seismic Zone Leaky Transform Zone Rotation of Microplate Tectonics of Iceland
下载PDF
Tectonic Control of the Theistareykir Geothermal Field by Rift and Transform Zones in North Iceland:A Multidisciplinary Approach
6
作者 maryam khodayar Sveinbjorn Bjornsson +3 位作者 Sigurour Garoar Kristinsson Ragna Karlsdóttir Magnús Olafsson Skúli Víkingsson 《Open Journal of Geology》 2018年第6期543-584,共42页
This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tj&#246;rnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geother... This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tj&#246;rnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geothermal field and its surroundings. About 10729 fracture segments (faults, open fractures, joints) are identified in the upper Tertiary to Holocene igneous series. The segments were extracted from aerial images and hillshade, and then analyzed in terms of number of sets, geometry, motions, frequency, and relative age. The correlation with surface geothermal manifestations, resistivity, earthquakes, and occasional well data reveals the critical regional and local fractures at the surface, reservoir level and greater depth. The main conclusions of this study are: 1) The structural pattern consists of N-S rift-parallel extensional fractures and the Riedel shears of the transform zone striking NNE, ENE, E-W, WNW and NW, which compartmentalize together the blocks at any scale. 2) The en échelon segmentation shows strike and oblique slips on the Riedel shears, with a dextral component on the WNW and NW planes and a sinistral component on the NNE to ENE faults. 3) Fractures form under the influence of the transform mechanism and the effect of rifting becomes significant only with time. 4) The WNW dextral oblique-slip Stórihver Fault of the transform zone has a horsetail splay that extends eastwards into the geothermal field. There, this structure, along with few NW, ENE, NNE and N-S fractures, controls the alteration, alignment of fumaroles, emanating deep gases. These fractures also rupture during natural or induced earthquakes. 5) The resistivity anomalies present en échelon geometries controlled by the six fracture sets. These anomalies display clockwise and anticlockwise rotations within the upper 8 km crustal depth, but at 8 km depth, only three sets (the N-S rift structures, and the E-W and the NW Riedel shears) are present at the rift and transform plate boundaries. Results of this study are relevant to resource exploration in other complex extensional contexts where rift and transform interact.&#246;&#246;&#246; 展开更多
关键词 Northern Rift Zone of Iceland Tjornes Transform Zone Tectonic Control of Geothermal Activity Fractured Reservoir EARTHQUAKES Resistivity Anomalies
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部